scholarly journals Comparative Mitogenomics and Phylogenetic Analyses of Pentatomoidea (Hemiptera: Heteroptera)

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1306
Author(s):  
Shiwen Xu ◽  
Yunfei Wu ◽  
Yingqi Liu ◽  
Ping Zhao ◽  
Zhuo Chen ◽  
...  

Pentatomoidea is the largest superfamily of Pentatomomorpha; however, the phylogenetic relationships among pentatomoid families have been debated for a long time. In the present study, we gathered the mitogenomes of 55 species from eight common families (Acanthosomatidae, Cydnidae, Dinidoridae, Scutelleridae, Tessaratomidae, Plataspidae, Urostylididae and Pentatomidae), including 20 newly sequenced mitogenomes, and conducted comparative mitogenomic studies with an emphasis on the structures of non-coding regions. Heterogeneity in the base composition, and contrasting evolutionary rates were encountered among the mitogenomes in Pentatomoidea, especially in Urostylididae, which may lead to unstable phylogenetic topologies. When the family Urostylididae is excluded in taxa sampling or the third codon positions of protein coding genes are removed, phylogenetic analyses under site-homogenous models could provide more stable tree topologies. However, the relationships between families remained the same in all PhyloBayes analyses under the site-heterogeneous mixture model CAT + GTR with different datasets and were recovered as (Cydnidae + (((Tessaratomidae + Dinidoridae) + (Plataspidae + Scutelleridae)) + ((Acanthosomatidae + Urostylididae) + Pentatomidae)))). Our study showed that data optimizing strategies after heterogeneity assessments based on denser sampling and the use of site-heterogeneous mixture models are essential for further analysis of the phylogenetic relationships of Pentatomoidea.

2019 ◽  
Vol 19 (6) ◽  
Author(s):  
Wanqing Zhao ◽  
Qing Zhao ◽  
Min Li ◽  
Jiufeng Wei ◽  
Xianhong Zhang ◽  
...  

Abstract The family Pentatomidae, the largest within the superfamily Pentatomoidae, comprises about 5,000 species; many of which are economically important pests. Although the phylogeny of Pentatomidae species has been studied using various molecular markers, their phylogenetic relationships remain controversial. Recently, mitochondrial genomes (mitogenomes) have been extensively employed to examine the phylogenetics and evolution of different insects, and in this study, we sequenced complete/near-complete mitochondrial genomes from five shield bug species of Eurydema to gain a better understanding of phylogenetic relationships in the Pentatomidae. The five mitogenomes ranged in length from 15,500 to 16,752 bp and comprised 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a control region. We compared mitogenomic characteristics of the Pentatomidae and constructed phylogenetic trees using Bayesian inference and maximum likelihood methods. Our results showed that gene arrangements, base composition, start/stop codons, gene overlaps, and RNA structures were conserved within the Pentatomidae and that congeneric species shared more characteristics. Saturation and heterogeneity analyses revealed that our PCGs and PCGRNA datasets were valid for phylogenetic analysis. Phylogenetic analyses showed consistent topologies based on BI and ML methods. These analyses strongly supported that Eurydema species belong to the tribe Strachiini, and formed a sister group with Pentatomini. The relationships among Eurydema species were shown to be consistent with their morphological features. (Strachiini + Pentatomini) was found to be a stable sibling of the clade comprising Cappaeini, Graphosomini, and Carpocorini. Furthermore, our results indicated that Graphosoma rubrolineatum (Heteroptera: Pentatomidae) belongs to the Pentatominae and not the Podopinae.


2018 ◽  
Vol 66 (3) ◽  
pp. 167 ◽  
Author(s):  
Zuhao Huang ◽  
Feiyun Tu ◽  
Shan Tang

The superfamily Sylvioidea contains the most diversified species within the Passerida. The grey-cheeked fulvetta (Alcippe morrisonia) and the eyebrowed wren-babbler (Napothera epilepidota) are birds with a weak flight that live in lightly wooded or scrubland environments. In the present study, two new mitogenomes of A. morrisonia (KX376475) and N. epilepidota (KX831093) within the superfamily Sylvioidea were sequenced and their total lengths were 17788bp and 17913bp, respectively. Both mitogenomes comprised 13 protein-coding genes, 22 tRNAs, 2 rRNAs and two control regions (CR and CCR). Similar to most metazoans, both mitogenomes and their protein-coding genes encoded on the H-strand displayed typical positive AT skews and negative GC skews. Bayesian inference and maximum-likelihood phylogenetic analyses were conducted on the basis of partitioned data of mitogenomes and two identical topologies were observed. The family-level phylogenetic relationships ((((Pellorneidae, Leiothrichidae) Timaliidae) Zosteropidae) Sylviidae) among the superfamily Sylvioidea were strongly supported. Within the family Pellorneidae, A. morrisonia clustered with N. epilepidota. Within Leiothrichidae, we further demonstrated that Babax lanceolatus is sister to Garrulax perspicillatus, and Spizixos semitorques was nested within the genus Pycnonotus according to the mitogenomic data and we propose that the generic placement of Spizixos should be reconsidered.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinjun Cao ◽  
Ying Wang ◽  
Xuan Guo ◽  
Guoquan Wang ◽  
Weihai Li ◽  
...  

Abstract The family-level relationships within Plecoptera have been a focused area of research for a long time. Its higher classification remains unstable, and the phylogenetic relationships within Plecoptera should be re-examined. Here, we sequenced and analyzed two complete mitochondrial genomes (mitogenomes) of Paraleuctra cercia and Perlomyia isobeae of the family Leuctridae. We reconstructed the phylogeny of Plecoptera based on 13 protein-coding genes (PCGs) from published stoneflies. Our results showed that the Bayesian inference and maximum-likelihood tree had similar topological structures except for the positions of two families, Peltoperlidae and Scopuridae. The Plecoptera is divided into two clades, the suborder Antarctoperlaria and the suborder Arctoperlaria. The two suborders subsequently formed two groups, Eusthenioidea and Gripopterygoidea, and Euholognatha and Systellognatha, which is consistent with the results of morphological studies. In addition, the Leuctridae is the earliest branch within the superfamily Nemouroidea. But the monophyly of Perloidea and Pteronarcyoidea are still not well supported.


2019 ◽  
Vol 11 (10) ◽  
pp. 2824-2849 ◽  
Author(s):  
Paweł Mackiewicz ◽  
Adam Dawid Urantówka ◽  
Aleksandra Kroczak ◽  
Dorota Mackiewicz

Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.


Zootaxa ◽  
2021 ◽  
Vol 4952 (2) ◽  
pp. 331-353
Author(s):  
CHAO YANG ◽  
LE ZHAO ◽  
QINGXIONG WANG ◽  
HAO YUAN ◽  
XUEJUAN LI ◽  
...  

To gain a better understanding of mitogenome features and phylogenetic relationships in Sylvioidea, a superfamily of Passerida, suborder Passeri, Passeriformes, the whole mitogenome of Alaudala cheleensis Swinhoe (Alaudidae) was sequenced, a comparative mitogenomic analysis of 18 Sylvioidea species was carried out, and finally, a phylogeny was reconstructed based on the mitochondrial dataset. Gene order of the A. cheleensis mitogenome was similar to that of other Sylvioidea species, including the gene rearrangement of cytb-trnT-CR1-trnP-nad6-trnE-remnant CR2-trnF-rrnS. There was slightly higher A+T content than that of G+C in the mitogenome, with an obvious C skew. The ATG codon initiated all protein-coding genes, while six terminating codons were used. The secondary structure of rrnS contained three domains and 47 helices, whereas rrnL included six domains and 60 helices. All tRNAs could be folded into a classic clover-leaf secondary structure except for trnS (AGY). The CR1 could be divided into three domains, including several conserved boxes (C-string, F, E, D, C and B-box, Bird similarity box, CSB1). Comparative analyses within Sylvioidea mitogenomes showed that most mitochondrial features were consistent with that of the A. cheleensis mitogenome. The basal position of the Alaudidae within the Sylvioidea in our phylogenetic analyses is consistent with other recent studies. 


2021 ◽  
Vol 46 (1) ◽  
pp. 162-174
Author(s):  
Ming-Hui Yan ◽  
Chun-Yang Li ◽  
Peter W. Fritsch ◽  
Jie Cai ◽  
Heng-Chang Wang

Abstract—The phylogenetic relationships among 11 out of the 12 genera of the angiosperm family Styracaceae have been largely resolved with DNA sequence data based on all protein-coding genes of the plastome. The only genus that has not been phylogenomically investigated in the family with molecular data is the monotypic genus Parastyrax, which is extremely rare in the wild and difficult to collect. To complete the sampling of the genera comprising the Styracaceae, examine the plastome composition of Parastyrax, and further explore the phylogenetic relationships of the entire family, we sequenced the whole plastome of P. lacei and incorporated it into the Styracaceae dataset for phylogenetic analysis. Similar to most others in the family, the plastome is 158189 bp in length and contains a large single-copy region of 88085 bp and a small single-copy region of 18540 bp separated by two inverted-repeat regions of 25781 bp each. A total of 113 genes was predicted, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic relationships among all 12 genera of the family were constructed with 79 protein-coding genes. Consistent with a previous study, Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia were successively sister to the remainder of the family. Parastyrax was strongly supported as sister to an internal clade comprising seven other genera of the family, whereas Halesia and Pterostyrax were both recovered as polyphyletic, as in prior studies. However, when we employed either the whole plastome or the large- or small-single copy regions as datasets, Pterostyrax was resolved as monophyletic with 100% support, consistent with expectations based on morphology and indicating that non-coding regions of the Styracaceae plastome contain informative phylogenetic signal. Conversely Halesia was still resolved as polyphyletic but with novel strong support.


2019 ◽  
Vol 20 (20) ◽  
pp. 5167 ◽  
Author(s):  
Qiang Li ◽  
Yuanhang Ren ◽  
Xiaodong Shi ◽  
Lianxin Peng ◽  
Jianglin Zhao ◽  
...  

In the present study, we assembled and compared two mitogenomes from the Rhizopogon genus. The two mitogenomes of R. salebrosus and R. vinicolor comprised circular DNA molecules, with the sizes of 66,704 bp and 77,109 bp, respectively. Comparative mitogenome analysis indicated that the length and base composition of protein coding genes (PCGs), rRNA genes and tRNA genes varied between the two species. Large fragments aligned between the mitochondrial and nuclear genomes of both R. salebrosus (43.41 kb) and R. vinicolor (12.83 kb) indicated that genetic transfer between mitochondrial and nuclear genomes has occurred over evolutionary time of Rhizopogon species. Intronic regions were found to be the main factors contributing to mitogenome expansion in R. vinicolor. Variations in the number and type of introns in the two mitogenomes indicated that frequent intron loss/gain events occurred during the evolution of Rhizopogon species. Phylogenetic analyses based on Bayesian inference (BI) and Maximum likelihood (ML) methods using a combined mitochondrial gene set yielded identical and well-supported tree topologies, wherein Rhizopogon species showed close relationships with Agaricales species. This is the first study of mitogenomes within the genus Rhizopogon, and it provides a basis for understanding the evolution and differentiation of mitogenomes from the ectomycorrhizal fungal genus.


2020 ◽  
Vol 5 (1) ◽  
pp. 119-130 ◽  
Author(s):  
C.-C. Chen ◽  
B. Cao ◽  
T. Hattori ◽  
B.-K. Cui ◽  
C.-Y. Chen ◽  
...  

Paratrichaptum accuratum is a large conspicuous polypore fungus growing on dead or living angiosperm trees in subtropical-boreal areas of China, Indonesia, Japan, and Taiwan. The present study places P. accuratum in the family Gloeophyllaceae that belongs to the order Gloeophyllales within Agaricomycetes (Basidiomycota), based on evidence derived from morphological and ecological characteristics, and phylogenetic analyses of sequences of nuclear rDNA regions (5.8S, nuc 18S, nuc 28S) and protein-coding genes (rpb1, rpb2, and tef1). The analyses presented in this study also give strong support for including Jaapia in Gloeophyllaceae and Gloeophyllales. Thus, the names Jaapiaceae and Jaapiales are considered here as synonyms of Gloeophyllaceae and Gloeophyllales. Since Paratrichaptum represents the earliest diverging lineage in Gloeophyllales, pileate basidiocarps and brown rot appear to be ancestral states of Gloeophyllales. Paratrichaptum accuratum may represent a relic species, according to its phylogenetic position, peculiar distribution pattern and rare occurrence.


2009 ◽  
Vol 57 (4) ◽  
pp. 167 ◽  
Author(s):  
Gavin Huttley

Did the mammal radiation arise through initial divergence of prototherians from a common ancestor of metatherians and eutherians, the Theria hypothesis, or of eutherians from a common ancestor of metatherians and prototherians, the Marsupionta hypothesis? Molecular phylogenetic analyses of point substitutions applied to this problem have been contradictory – mtDNA-encoded sequences supported Marsupionta, nuclear-encoded sequences and RY (purine–pyrimidine)-recoded mtDNA supported Theria. The consistency property of maximum likelihood guarantees convergence on the true tree only with longer alignments. Results from analyses of genome datasets should therefore be impervious to choice of outgroup. We assessed whether important hypotheses concerning mammal evolution, including Theria/Marsupionta and the branching order of rodents, carnivorans and primates, are resolved by phylogenetic analyses using ~2.3 megabases of protein-coding sequence from genome projects. In each case, only two tree topologies were being compared and thus inconsistency in resolved topologies can only derive from flawed models of sequence divergence. The results from all substitution models strongly supported Theria. For the eutherian lineages, all models were sensitive to the outgroup. We argue that phylogenetic inference from point substitutions will remain unreliable until substitution models that better match biological mechanisms of sequence divergence have been developed.


2004 ◽  
Vol 64 (3a) ◽  
pp. 383-398
Author(s):  
M. L. Christoffersen ◽  
M. E. Araújo ◽  
M. A. M. Moreira

Total sequence phylogenies have low information content. Ordinary misconceptions are that character quality can be ignored and that relying on computer algorithms is enough. Despite widespread preference for a posteriori methods of character evaluation, a priori methods are necessary to produce transformation series that are independent of tree topologies. We propose a stepwise qualitative method for analyzing protein sequences. Informative codons are selected, alternative amino acid transformation series are analyzed, and most parsimonious transformations are hypothesized. We conduct four phylogenetic analyses of philodryanine snakes. The tree based on all nucleotides produces least resolution. Trees based on the exclusion of third positions, on an asymmetric step matrix, and on our protocol, produce similar results. Our method eliminates noise by hypothesizing explicit transformation series for each informative protein-coding amino acid. This approaches qualitative methods for morphological data, in which only characters successfully interpreted in a phylogenetic context are used in cladistic analyses. The method allows utilizing character information contained in the original sequence alignment and, therefore, has higher resolution in inferring a phylogenetic tree than some traditional methods (such as distance methods).


Sign in / Sign up

Export Citation Format

Share Document