Two new mitogenomes of Pellorneidae (Aves : Passeriformes) and a phylogeny of the superfamily Sylvioidea

2018 ◽  
Vol 66 (3) ◽  
pp. 167 ◽  
Author(s):  
Zuhao Huang ◽  
Feiyun Tu ◽  
Shan Tang

The superfamily Sylvioidea contains the most diversified species within the Passerida. The grey-cheeked fulvetta (Alcippe morrisonia) and the eyebrowed wren-babbler (Napothera epilepidota) are birds with a weak flight that live in lightly wooded or scrubland environments. In the present study, two new mitogenomes of A. morrisonia (KX376475) and N. epilepidota (KX831093) within the superfamily Sylvioidea were sequenced and their total lengths were 17788bp and 17913bp, respectively. Both mitogenomes comprised 13 protein-coding genes, 22 tRNAs, 2 rRNAs and two control regions (CR and CCR). Similar to most metazoans, both mitogenomes and their protein-coding genes encoded on the H-strand displayed typical positive AT skews and negative GC skews. Bayesian inference and maximum-likelihood phylogenetic analyses were conducted on the basis of partitioned data of mitogenomes and two identical topologies were observed. The family-level phylogenetic relationships ((((Pellorneidae, Leiothrichidae) Timaliidae) Zosteropidae) Sylviidae) among the superfamily Sylvioidea were strongly supported. Within the family Pellorneidae, A. morrisonia clustered with N. epilepidota. Within Leiothrichidae, we further demonstrated that Babax lanceolatus is sister to Garrulax perspicillatus, and Spizixos semitorques was nested within the genus Pycnonotus according to the mitogenomic data and we propose that the generic placement of Spizixos should be reconsidered.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinjun Cao ◽  
Ying Wang ◽  
Xuan Guo ◽  
Guoquan Wang ◽  
Weihai Li ◽  
...  

Abstract The family-level relationships within Plecoptera have been a focused area of research for a long time. Its higher classification remains unstable, and the phylogenetic relationships within Plecoptera should be re-examined. Here, we sequenced and analyzed two complete mitochondrial genomes (mitogenomes) of Paraleuctra cercia and Perlomyia isobeae of the family Leuctridae. We reconstructed the phylogeny of Plecoptera based on 13 protein-coding genes (PCGs) from published stoneflies. Our results showed that the Bayesian inference and maximum-likelihood tree had similar topological structures except for the positions of two families, Peltoperlidae and Scopuridae. The Plecoptera is divided into two clades, the suborder Antarctoperlaria and the suborder Arctoperlaria. The two suborders subsequently formed two groups, Eusthenioidea and Gripopterygoidea, and Euholognatha and Systellognatha, which is consistent with the results of morphological studies. In addition, the Leuctridae is the earliest branch within the superfamily Nemouroidea. But the monophyly of Perloidea and Pteronarcyoidea are still not well supported.



2018 ◽  
Vol 93 (6) ◽  
pp. 763-771 ◽  
Author(s):  
M.P. Ortega-Olivares ◽  
M. García-Varela

AbstractTapeworms of the family Gryporhynchidae are endoparasites of fish-eating birds distributed worldwide. Currently the family contains 16 genera classified on the basis of the morphology of the rostellar apparatus, rostellar hooks and strobilar anatomy. However, the phylogenetic relationships among the genera are still unknown. In this study, sequences of the near complete 18S (SSU) and 28S (LSU) from rDNA of 13 species of gryporhynchids (adult specimens) representing eight genera (Cyclustera, Dendrouterina, Glossocercus, Gryporhynchidae gen. sp., Neovalipora, Paradilepis, Parvitaenia, Valipora) and one species of metacestode from fish (Neovalipora) were generated. Additionally, sequences of metacestodes of the genera Amirthalingamia, Neogryporhynchus, Paradilepis, Parvitaenia and Valipora from Africa recently added to the GenBank database were analysed. Phylogenetic relationships were inferred using maximum-likelihood (ML) and Bayesian inference of each (SSU and LSU) dataset. The phylogenetic analyses indicated that the family Gryporhynchidae is a well-supported monophyletic group within the Cyclophyllidea. The trees inferred with SSU and LSU datasets had similar topologies and suggested that the genera Glossocercus (two species sequenced) and Paradilepis (four spp.) are monophyletic. In contrast, Dendrouterina, Parvitaenia and Valipora are paraphyletic, suggesting that the species composition of these genera should be critically reviewed. Interestingly, species of the genera that use the same groups of definitive hosts such as herons (Ardeidae), cormorants (Phalacrocoracidae) and ibis (Threskiornithidae) are together in the phylogenetic tree, even though they differ markedly from each other in some morphological characters, especially shape and size of rostellar hooks.



Zootaxa ◽  
2021 ◽  
Vol 4952 (2) ◽  
pp. 331-353
Author(s):  
CHAO YANG ◽  
LE ZHAO ◽  
QINGXIONG WANG ◽  
HAO YUAN ◽  
XUEJUAN LI ◽  
...  

To gain a better understanding of mitogenome features and phylogenetic relationships in Sylvioidea, a superfamily of Passerida, suborder Passeri, Passeriformes, the whole mitogenome of Alaudala cheleensis Swinhoe (Alaudidae) was sequenced, a comparative mitogenomic analysis of 18 Sylvioidea species was carried out, and finally, a phylogeny was reconstructed based on the mitochondrial dataset. Gene order of the A. cheleensis mitogenome was similar to that of other Sylvioidea species, including the gene rearrangement of cytb-trnT-CR1-trnP-nad6-trnE-remnant CR2-trnF-rrnS. There was slightly higher A+T content than that of G+C in the mitogenome, with an obvious C skew. The ATG codon initiated all protein-coding genes, while six terminating codons were used. The secondary structure of rrnS contained three domains and 47 helices, whereas rrnL included six domains and 60 helices. All tRNAs could be folded into a classic clover-leaf secondary structure except for trnS (AGY). The CR1 could be divided into three domains, including several conserved boxes (C-string, F, E, D, C and B-box, Bird similarity box, CSB1). Comparative analyses within Sylvioidea mitogenomes showed that most mitochondrial features were consistent with that of the A. cheleensis mitogenome. The basal position of the Alaudidae within the Sylvioidea in our phylogenetic analyses is consistent with other recent studies. 



2021 ◽  
Vol 46 (1) ◽  
pp. 162-174
Author(s):  
Ming-Hui Yan ◽  
Chun-Yang Li ◽  
Peter W. Fritsch ◽  
Jie Cai ◽  
Heng-Chang Wang

Abstract—The phylogenetic relationships among 11 out of the 12 genera of the angiosperm family Styracaceae have been largely resolved with DNA sequence data based on all protein-coding genes of the plastome. The only genus that has not been phylogenomically investigated in the family with molecular data is the monotypic genus Parastyrax, which is extremely rare in the wild and difficult to collect. To complete the sampling of the genera comprising the Styracaceae, examine the plastome composition of Parastyrax, and further explore the phylogenetic relationships of the entire family, we sequenced the whole plastome of P. lacei and incorporated it into the Styracaceae dataset for phylogenetic analysis. Similar to most others in the family, the plastome is 158189 bp in length and contains a large single-copy region of 88085 bp and a small single-copy region of 18540 bp separated by two inverted-repeat regions of 25781 bp each. A total of 113 genes was predicted, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic relationships among all 12 genera of the family were constructed with 79 protein-coding genes. Consistent with a previous study, Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia were successively sister to the remainder of the family. Parastyrax was strongly supported as sister to an internal clade comprising seven other genera of the family, whereas Halesia and Pterostyrax were both recovered as polyphyletic, as in prior studies. However, when we employed either the whole plastome or the large- or small-single copy regions as datasets, Pterostyrax was resolved as monophyletic with 100% support, consistent with expectations based on morphology and indicating that non-coding regions of the Styracaceae plastome contain informative phylogenetic signal. Conversely Halesia was still resolved as polyphyletic but with novel strong support.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Sun ◽  
Hua Huang ◽  
Yudong Liu ◽  
Shanshan Liu ◽  
Jun Xia ◽  
...  

AbstractIn this study, we analyzed the complete mitochondrial genome (mitogenome) of Speiredonia retorta, which is a pest and a member of the Lepidoptera order. In total, the S. retorta mitogenome was found to contain 15,652 base pairs encoding 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, as well as an adenine (A) + thymine (T)-rich region. These findings were consistent with the mitogenome composition of other lepidopterans, as we identified all 13 PCGs beginning at ATN codons. We also found that 11 PCGs terminated with canonical stop codons, whereas cox2 and nad4 exhibited incomplete termination codons. By analyzing the mitogenome of S. retorta using Bayesian inference (BI) and maximum likelihood (ML) models, we were able to further confirm that this species is a member of the Erebidae family.



2020 ◽  
Author(s):  
Yi-Tian Fu ◽  
Yu Nie ◽  
De-Yong Duan ◽  
Guo-Hua Liu

Abstract Background: The family Hoplopleuridae contains at least 183 species of blood-sucking lice, which widely parasitize both mice and rats. Fragmented mitochondrial (mt) genomes have been reported in two rat lice (Hoplopleura kitti and H. akanezumi) from this family, but some minichromosomes were unidentified in their mt genomes.Methods: We sequenced the mt genome of the rat louse Hoplopleura sp. with an Illumina platform and compared its mt genome organization with H. kitti and H. akanezumi.Results: Fragmented mt genome of the rat louse Hoplopleura sp. contains 37 genes which are on 12 circular mt minichromosomes. Each mt minichromosome is 1.8–2.7 kb long and contains 1–5 genes and one large non-coding region. The gene content and arrangement of mt minichromosomes of Hoplopleura sp. (n = 3) and H. kitti (n = 3) are different from those in H. akanezumi (n = 3). Phylogenetic analyses based on the deduced amino acid sequences of the eight protein-coding genes showed that the Hoplopleura sp. was more closely related to H. akanezumi than to H. kitti, and then they formed a monophyletic group.Conclusions: Comparison among the three rat lice revealed variation in the composition of mt minichromosomes within the genus Hoplopleura. Hoplopleura sp. is the first species from the family Hoplopleuridae for which a complete fragmented mt genome has been sequenced. The new data provide useful genetic markers for studying the population genetics, molecular systematics and phylogenetics of blood-sucking lice.



PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8274 ◽  
Author(s):  
Dan Chen ◽  
Jing Liu ◽  
Luca Bartolozzi ◽  
Xia Wan

Background The stag beetle Lucanus cervus (Coleoptera: Lucanidae) is widely distributed in Europe. Habitat loss and fragmentation has led to significant reductions in numbers of this species. In this study, we sequenced the complete mitochondrial genome of L. cervus and reconstructed phylogenetic relationships among Lucanidae using complete mitochondrial genome sequences. Methods Raw data sequences were generated by the next generation sequencing using Illumina platform from genomic DNA of L. cervus. The mitochondrial genome was assembled by IDBA and annotated by MITOS. The aligned sequences of mitochondrial genes were partitioned using PartitionFinder 2. Phylogenetic relationships among 19 stag beetle species were constructed using Maximum Likelihood (ML) method implemented in IQ-TREE web server and Bayesian method implemented in PhyloBayes MPI 1.5a. Three scarab beetles were used as outgroups. Results The complete mitochondrial genome of L. cervus is 20,109 bp in length, comprising 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNAs and a control region. The A + T content is 69.93% for the majority strand. All protein-coding genes start with the typical ATN initiation codons except for cox1, which uses AAT. Phylogenetic analyses based on ML and Bayesian methods shown consistent topologies among Lucanidae.



2014 ◽  
Vol 35 (3) ◽  
pp. 331-343 ◽  
Author(s):  
Yongmin Li ◽  
Huabin Zhang ◽  
Xiaoyou Wu ◽  
Hui Xue ◽  
Peng Yan ◽  
...  

We determined the complete nucleotide sequence of the mitochondrial genome of Odorrana schmackeri (family Ranidae). The O. schmackeri mitogenome (18 302 bp) contained 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes and a single control region (CR). In the new mitogenome, the distinctive feature is the loss of tRNA-His, which could be explained by a hypothesis of gene substitution. The new sequence data was used to assess the phylogenetic relationships among 23 ranid species mostly from China using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses support two families (Ranidae, Dicroglossidae) for Chinese ranids. In Ranidae, we support the genus Amolops should be retained in the subfamily Raninae rather than in a distinct subfamily Amolopinae of its own. Meanwhile, the monophyly of the genus Odorrana was supported. Within Dicroglossidae, four tribes were well supported including Occidozygini, Dicroglossini, Limnonectini and Paini. More mitochondrial genomes and nuclear genes are required to decisively evaluate phylogenetic relationships of ranids.



2019 ◽  
Vol 19 (6) ◽  
Author(s):  
Wanqing Zhao ◽  
Qing Zhao ◽  
Min Li ◽  
Jiufeng Wei ◽  
Xianhong Zhang ◽  
...  

Abstract The family Pentatomidae, the largest within the superfamily Pentatomoidae, comprises about 5,000 species; many of which are economically important pests. Although the phylogeny of Pentatomidae species has been studied using various molecular markers, their phylogenetic relationships remain controversial. Recently, mitochondrial genomes (mitogenomes) have been extensively employed to examine the phylogenetics and evolution of different insects, and in this study, we sequenced complete/near-complete mitochondrial genomes from five shield bug species of Eurydema to gain a better understanding of phylogenetic relationships in the Pentatomidae. The five mitogenomes ranged in length from 15,500 to 16,752 bp and comprised 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a control region. We compared mitogenomic characteristics of the Pentatomidae and constructed phylogenetic trees using Bayesian inference and maximum likelihood methods. Our results showed that gene arrangements, base composition, start/stop codons, gene overlaps, and RNA structures were conserved within the Pentatomidae and that congeneric species shared more characteristics. Saturation and heterogeneity analyses revealed that our PCGs and PCGRNA datasets were valid for phylogenetic analysis. Phylogenetic analyses showed consistent topologies based on BI and ML methods. These analyses strongly supported that Eurydema species belong to the tribe Strachiini, and formed a sister group with Pentatomini. The relationships among Eurydema species were shown to be consistent with their morphological features. (Strachiini + Pentatomini) was found to be a stable sibling of the clade comprising Cappaeini, Graphosomini, and Carpocorini. Furthermore, our results indicated that Graphosoma rubrolineatum (Heteroptera: Pentatomidae) belongs to the Pentatominae and not the Podopinae.



2019 ◽  
Vol 192 (1) ◽  
pp. 61-81 ◽  
Author(s):  
Iasmin L C Oliveira ◽  
Andreza O Matos ◽  
Christian Silva ◽  
Maria Luiza S Carvalho ◽  
Christopher D Tyrrell ◽  
...  

Abstract The present study aims to expand the knowledge of phylogenetic relationships in Olyrinae, a subtribe of herbaceous bamboos (Poaceae: Bambusoideae: Olyreae). Our focus is on Parodiolyra and Raddiella, two historically related genera that, with their sister Diandrolyra, form one of the four main lineages in the subtribe. Previous phylogenetic analyses suggested that Parodiolyra is not monophyletic, but its taxonomic boundaries and its relationship with Raddiella remain uncertain due to low sampling. We increased the taxon sampling and sequenced five regions of the nuclear and plastid genomes for this lineage and other representatives of Olyreae. We used maximum parsimony, maximum likelihood, Bayesian inference and coalescence analysis. Our results corroborate the paraphyly of Parodiolyra, with P. micrantha sister to a clade including the remaining Parodiolyra and Raddiella. All remaining Parodiolyra form a well-supported clade, but Raddiella had conflicting resolutions, being either monophyletic or not. Thus, based on phylogenetic and morphological evidence, we here recircumscribe Parodiolyra, transferring P. micrantha and P. colombiensis to the new genus Taquara (described here). Regarding Raddiella, sampling is still not comprehensive and does not allow a decision on to its taxonomic status to be made at this time. Inclusion of other phreatophytic species may be crucial to resolve the problem of conflicting topologies.



Sign in / Sign up

Export Citation Format

Share Document