scholarly journals Root Reinforcement in Slope Stability Models: A Review

Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 212
Author(s):  
Elena Benedetta Masi ◽  
Samuele Segoni ◽  
Veronica Tofani

The influence of vegetation on mechanical and hydrological soil behavior represents a significant factor to be considered in shallow landslides modelling. Among the multiple effects exerted by vegetation, root reinforcement is widely recognized as one of the most relevant for slope stability. Lately, the literature has been greatly enriched by novel research on this phenomenon. To investigate which aspects have been most treated, which results have been obtained and which aspects require further attention, we reviewed papers published during the period of 2015–2020 dealing with root reinforcement. This paper—after introducing main effects of vegetation on slope stability, recalling studies of reference—provides a synthesis of the main contributions to the subtopics: (i) approaches for estimating root reinforcement distribution at a regional scale; (ii) new slope stability models, including root reinforcement and (iii) the influence of particular plant species, forest management, forest structure, wildfires and soil moisture gradient on root reinforcement. Including root reinforcement in slope stability analysis has resulted a topic receiving growing attention, particularly in Europe; in addition, research interests are also emerging in Asia. Despite recent advances, including root reinforcement into regional models still represents a research challenge, because of its high spatial and temporal variability: only a few applications are reported about areas of hundreds of square kilometers. The most promising and necessary future research directions include the study of soil moisture gradient and wildfire controls on the root strength, as these aspects have not been fully integrated into slope stability modelling.

2013 ◽  
Vol 50 (3) ◽  
pp. 407-425 ◽  
Author(s):  
T. SAMPATHKUMAR ◽  
B. J. PANDIAN ◽  
P. JEYAKUMAR ◽  
P. MANICKASUNDARAM

SUMMARYWater stress induces some physiological changes in plants and has cumulative effects on crop growth and yield. Field experiments were conducted to study the effect of deficit irrigation (DI) on yield and some physiological parameters in cotton and maize in a sequential cropping system. Creation of soil moisture gradient is indispensable to explore the beneficial effects of partial root zone drying (PRD) irrigation and it could be possible only through alternate deficit irrigation (ADI) practice in paired row system of drip layout that is commonly practiced in India. In the present study, PRD and DI concepts (creation of soil moisture gradient) were implemented through ADI at two levels of irrigation using drip system. Maize was sown after cotton under no till condition without disturbing the raised bed and drip layout. Relative leaf water content (RLWC) and chlorophyll stability index (CSI) of cotton and maize were reduced under water stress. A higher level of leaf proline content was observed under severe water-stressed treatments in cotton and maize. RLWC and CSI were highest and leaf proline content was lowest in mild water deficit (ADI at 100% crop evapotranspiration once in three days) irrigation in cotton and maize. The same treatments registered higher values for crop yields, net income and benefit cost ratio for both the crops.


Koedoe ◽  
1997 ◽  
Vol 40 (2) ◽  
Author(s):  
C.M. Smit ◽  
G.J. Bredenkamp ◽  
N. Van Rooyen ◽  
A.E. Van Wyk ◽  
J.M. Combrinck

A vegetation survey of the Witbank Nature Reserve, comprising 847 hectares, was conducted. Phytosociological data were used to identify plant communities, as well as to determine alpha and beta diversities. Eleven plant communities were recognised, two of these are subdivided into sub- communities, resulting in 14 vegetation units. These communities represent four main vegetation types, namely grassland, woodland, wetland and disturbed vegetation. Grassland communities have the highest plant diversity and wetland vegetation the lowest. Floristic composition indicates that the vegetation of the Rocky Highveld Grassland has affinities to the grassland and savanna biomes and also to the Afromontane vegetation of the Great Escarpment. An ordination scatter diagram shows the distribution of the 14 plant communities or sub-communities along a soil moisture gradient, as well as along a soil depth/surface rock gradient. The sequence of communities along the soil moisture gradient is used for calculating beta-diversity indices. It is concluded that the relatively small size of the Witbank Nature Reserve is unlikely to have significant negative effects on the phytodiversity of the various plant communities. This nature reserve is therefore of considerable importance in conserving a representative sample of the Rocky Highveld Grassland.


2004 ◽  
Vol 15 (2) ◽  
pp. 119-123 ◽  
Author(s):  
Wang Yan ◽  
Wang Qing-li ◽  
Dai Li-min ◽  
Wang Miao ◽  
Zhou Li ◽  
...  

Crop Science ◽  
2009 ◽  
Vol 49 (4) ◽  
pp. 1473-1480 ◽  
Author(s):  
Gerald M. Henry ◽  
Fred H. Yelverton ◽  
Michael G. Burton

Biologia ◽  
2019 ◽  
Vol 75 (2) ◽  
pp. 243-257
Author(s):  
Patrícia Jakšová ◽  
Peter Ľuptáčik ◽  
Dana Miklisová ◽  
Františka Horváthová ◽  
Helena Hlavatá

Sign in / Sign up

Export Citation Format

Share Document