scholarly journals Tracing δ18O and δ2H in Source Waters and Recharge Pathways of a Fractured-Basalt and Interbedded-Sediment Aquifer, Columbia River Flood Basalt Province

Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 400
Author(s):  
David Behrens ◽  
Jeff B. Langman ◽  
Erin S. Brooks ◽  
Jan Boll ◽  
Kristopher Waynant ◽  
...  

The heterogeneity and anisotropy of fractured-rock aquifers, such as those in the Columbia River Basalt Province, present challenges for determining groundwater recharge. The entrance of recharge to the fractured-basalt and interbedded-sediment aquifer in the Palouse region of north-central Idaho is not well understood because of successive basalt flows that act as restrictive barriers. It was hypothesized that a primary recharge zone exists along the basin’s eastern margin at a mountain-front interface where eroded sediments form a more conductive zone for recharge. Potential source waters and groundwater were analyzed for δ18O and δ2H to discriminate recharge sources and pathways. Snowpack values ranged from −22 to −12‰ for δ18O and from −160 to −90‰ for δ2H and produced spring-time snowmelt ranging from −16.5 to −12‰ for δ18O and from −120 to −90‰ for δ2H. With the transition of snowmelt to spring-time ephemeral creeks, the isotope values compressed to −16 and −14‰ for δ18O and −110 and −105‰ for δ2H. A greater range of values was present for a perennial creek (−18 to −13.5‰ for δ18O and −125 to −98‰ for δ2H) and groundwater (−17.5 to −13‰ for δ18O and −132 to −105‰ for δ2H), which reflect a mixing of seasonal signals and the varying influence of vapor sources and sublimation/evaporation. Inverse modeling and the evaluation of matrix characteristics indicate conductive pathways associated with paleochannels and deeper pathways along the mountain-front interface. Depleted isotope signals indicate quicker infiltration and recharge pathways that were separate from, or had limited mixing with, more evaporated water that infiltrated after greater time/travel at the surface.

Geology ◽  
2020 ◽  
Vol 48 (4) ◽  
pp. 348-352 ◽  
Author(s):  
Emily B. Cahoon ◽  
Martin J. Streck ◽  
Anthony A.P. Koppers ◽  
Daniel P. Miggins

Abstract The Columbia River Basalt Group (CRBG) is the world’s youngest continental flood basalt province, presumably sourced from the deep-seated plume that currently resides underneath Yellowstone National Park in the northwestern United States. The earliest-erupted basalts from this province aid in understanding and modeling plume impingement and the subsequent evolution of basaltic volcanism. We explore the Picture Gorge Basalt (PGB) formation of the CRBG, and discuss the location and geochemical significance in a temporal context of early CRBG magmatism. We report new ARGUS-VI multicollector 40Ar/39Ar incremental heating ages from known PGB localities and additional outcrops that we can geochemically classify as PGB. These 40Ar/39Ar ages range between 17.23 ± 0.04 Ma and 16.06 ± 0.14 Ma, indicating that PGB erupted earlier and for longer than other CRBG main-phase units. These ages illustrate that volcanism initiated over a broad area in the center of the province, and the geochemistry of these early lavas reflects a mantle source that is distinct both spatially and temporally. Combining ages with the strongest arc-like (but depleted) geochemical signal of PGB among CRBG units indicates that the shallowest metasomatized backarc-like mantle was tapped first and concurrently, with later units (Steens and Imnaha Basalts) showing increased influence of a plume-like source.


Geology ◽  
2021 ◽  
Author(s):  
Daianne Höfig ◽  
Yi Ge Zhang ◽  
Liviu Giosan ◽  
Qin Leng ◽  
Jiaqi Liang ◽  
...  

The world-renowned Miocene Clarkia paleolake in northern Idaho (USA) is closely associated with Columbia River Basalt Group volcanism. The flood basalt dammed a local drainage system to form the paleolake, which preserved a plant fossil Lagerstätte in its deposits. However, the precise age and temporal duration of the lake remain unsettled. We present the first unequivocal U-Pb zircon ages from interbedded volcanic ashes at the P-33 type location, constraining the deposition to 15.78 ± 0.039 Ma. Using micro–X-ray fluorescence and petrographic and spectral analyses, we establish the annual characteristics of laminations throughout the stratigraphic profile using the distribution of elemental ratios, mineral assemblages, and grain-size structures, as well as organic and fossil contents. Consequently, the ~7.5-m-thick varved deposit at the type location P-33 represents ~840 yr of deposition, coincident with the end of the main phase of Columbia River Basalt Group eruptions during the Miocene Climate Optimum. The timing and temporal resolution of the deposit offer a unique opportunity to study climate change in unprecedented detail during global warming associated with carbon-cycle perturbations.


2020 ◽  
Vol 47 (4) ◽  
pp. 187-214
Author(s):  
Stephen P. Reidel ◽  
D. Brent Barnett

The Columbia River Basalt Group is the youngest and best preserved continental Large Igneous Province on Earth. The 210,000 km3 of basaltic lavas were erupted between 16.6 and 5 Ma in the Pacific Northwest, USA. The peak of the eruptions occurred over a 700,000-year period when nearly 99% of the basalts consisting of the Steens, Imnaha, Picture Gorge, Grande Ronde and Wanapum Basalts were emplaced. In this study we examined the Platinum Group Elements (PGEs) Pt and Pd, and the chalcophile elements Cu and Zn in the Columbia River Basalt Group. The presence of Pt, Pd and Cu in the compositionally primitive Lower Steens, Imnaha and Picture Gorge Basalts suggests that the Columbia River Basalt Group magma was a fertile source for these elements. The PGEs are contained mainly in sulphides in the earliest formations based on their correlation with immiscible sulphides, sulphide minerals and chalcophile elements. Grande Ronde, Wanapum and Saddle Mountains Basalts are depleted in PGEs and chalcophile elements compared to earlier formations. Sulphur was saturated in many flows and much of it probably came from assimilation of cratonic rock from a thinned lithosphere. We propose a model where the presence or absence of PGEs and chalcophile elements results primarily from the interaction between an advancing plume head and the crust/lithosphere that it encountered. The early lavas erupted from a plume that had little interaction with the crust/lithosphere and were fertile. However, as the plume head advanced northward, it assimilated crustal/lithospheric material and PGE and chalcophile elements were depleted from the magma. What little PGE and chalcophile elements remained in the compositionally evolved and depleted Grande Ronde Basalt flows mainly were controlled by substitution in basalt minerals and not available for inclusion in sulphides.  


2018 ◽  
Vol 4 (9) ◽  
pp. eaat8223 ◽  
Author(s):  
Jennifer Kasbohm ◽  
Blair Schoene

Flood basalts, the largest volcanic events in Earth history, are thought to drive global environmental change because they can emit large volumes of CO2and SO2over short geologic time scales. Eruption of the Columbia River Basalt Group (CRBG) has been linked to elevated atmospheric CO2and global warming during the mid-Miocene climate optimum (MMCO) ~16 million years (Ma) ago. However, a causative relationship between volcanism and warming remains speculative, as the timing and tempo of CRBG eruptions is not well known. We use U-Pb geochronology on zircon-bearing volcanic ash beds intercalated within the basalt stratigraphy to build a high-resolution CRBG eruption record. Our data set shows that more than 95% of the CRBG erupted between 16.7 and 15.9 Ma, twice as fast as previous estimates. By suggesting a recalibration of the geomagnetic polarity time scale, these data indicate that the onset of flood volcanism is nearly contemporaneous with that of the MMCO.


Sign in / Sign up

Export Citation Format

Share Document