scholarly journals Geophysical and Sedimentological Investigations of Peatlands for the Assessment of Lithology and Subsurface Water Pathways

Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 118 ◽  
Author(s):  
Julian Trappe ◽  
Christof Kneisel

Peatlands located on slopes (herein called slope bogs) are typical landscape units in the Hunsrueck, a low mountain range in Southwestern Germany. The pathways of the water feeding the slope bogs have not yet been documented and analyzed. The identification of the different mechanisms allowing these peatlands to originate and survive requires a better understanding of the subsurface lithology and hydrogeology. Hence, we applied a multi-method approach to two case study sites in order to characterize the subsurface lithology and to image the variable spatio-temporal hydrological conditions. The combination of Electrical Resistivity Tomography (ERT) and an ERT-Monitoring and Ground Penetrating Radar (GPR), in conjunction with direct methods and data (borehole drilling and meteorological data), allowed us to gain deeper insights into the subsurface characteristics and dynamics of the peatlands and their catchment area. The precipitation influences the hydrology of the peatlands as well as the interflow in the subsurface. Especially, the geoelectrical monitoring data, in combination with the precipitation and temperature data, indicate that there are several forces driving the hydrology and hydrogeology of the peatlands. While the water content of the uppermost layers changes with the weather conditions, the bottom layer seems to be more stable and changes to a lesser extent. At the selected case study sites, small differences in subsurface properties can have a huge impact on the subsurface hydrogeology and the water paths. Based on the collected data, conceptual models have been deduced for the two case study sites.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
K. Pugh ◽  
M. M. Stack

AbstractErosion rates of wind turbine blades are not constant, and they depend on many external factors including meteorological differences relating to global weather patterns. In order to track the degradation of the turbine blades, it is important to analyse the distribution and change in weather conditions across the country. This case study addresses rainfall in Western Europe using the UK and Ireland data to create a relationship between the erosion rate of wind turbine blades and rainfall for both countries. In order to match the appropriate erosion data to the meteorological data, 2 months of the annual rainfall were chosen, and the differences were analysed. The month of highest rain, January and month of least rain, May were selected for the study. The two variables were then combined with other data including hailstorm events and locations of wind turbine farms to create a general overview of erosion with relation to wind turbine blades.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2789
Author(s):  
Wenhui Li ◽  
Dongguo Shao ◽  
Wenquan Gu ◽  
Donghao Miao

Agricultural production depends on local agroclimatic conditions to a great extent, affected by ENSO and other ocean-atmospheric climate modes. This paper analyzed the spatio-temporal distributions of climate elements in the Jianghan Plain (JHP), Central China, and explored the impacts from teleconnection patterns, aimed at providing references for dealing with climate change and guiding agricultural activities. Both linear and multifactorial regression models were constructed based on the frequentist quantile regression and Bayesian quantile regression method, with the daily meteorological data sets of 17 national stations in the plain and teleconnection climate characteristic indices. The results showed that precipitation in JHP had stronger spatial variability than evapotranspiration. El Niño probably induced less precipitation in summer while the weakening Arctic Oscillation might lead to more summertime precipitation. The Nash-Sutcliffe efficiency (NSE) of the multifactorial and linear regression model at the median level were 0.42–0.56 and 0.12–0.18, respectively. The mean relative error (MRE) ranged −2.95–−0.26% and −7.83–0.94%, respectively, indicating the much better fitting accuracy of the multiple climatic factors model. Meanwhile it confirmed that the agricultural climate in JHP was under the influence from multiple teleconnection patterns.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Edward J. Kasner ◽  
Joanne B. Prado ◽  
Michael G. Yost ◽  
Richard A. Fenske

Abstract Background Pesticides play an important role in protecting the food supply and the public’s health from pests and diseases. By their nature, pesticides can be toxic to unintended target organisms. Changing winds contribute to pesticide drift— the off-target movement of pesticides—and can result in occupational and bystander illness. Methods We systematically linked historical weather data to documented pesticide drift illnesses. We used Washington State Department of Health data to identify 252 drift events that included 690 confirmed cases of illness from 2000 to 2015. To characterize wind speed and direction at the time of the events, we paired these data with meteorological data from a network of 171 state weather stations. We report descriptive statistics and the spatio-temporal extent of drift events and compare applicator-reported weather conditions to those from nearby meteorological stations. Results Most drift events occurred in tree fruit (151/252 = 60%). Ground spraying and aerial applications accounted for 68% and 23% of events, respectively; 69% of confirmed cases were workers, and 31% were bystanders. Confirmed cases were highest in 2014 (129) from 22 events. Complete applicator spray records were available for 57 drift events (23%). Average applicator-reported wind speeds were about 0.9 m •sec− 1 (2 mi •hr− 1) lower than corresponding speeds from the nearest weather station values. Conclusions Drift events result from a complex array of factors in the agricultural setting. We used known spatio-temporal aspects of drift and historical weather data to characterize these events, but additional research is needed to put our findings into practice. Particularly critical for this analysis is more accurate and complete information about location, time, wind speed, and wind direction. Our findings can be incorporated into new training materials to improve the practice of pesticide application and for better documentation of spray drift events. A precision agriculture approach offers technological solutions that simplify the task of tracking pesticide spraying and weather conditions. Public health investigators will benefit from improved meteorological data and accurate application records. Growers, applicators, and surrounding communities will also benefit from the explanatory and predictive potential of wind ramping studies.


1998 ◽  
Vol 37 (1) ◽  
pp. 155-162
Author(s):  
Flemming Schlütter ◽  
Kjeld Schaarup-Jensen

Increased knowledge of the processes which govern the transport of solids in sewers is necessary in order to develop more reliable and applicable sediment transport models for sewer systems. Proper validation of these are essential. For that purpose thorough field measurements are imperative. This paper renders initial results obtained in an ongoing case study of a Danish combined sewer system in Frejlev, a small town southwest of Aalborg, Denmark. Field data are presented concerning estimation of the sediment transport during dry weather. Finally, considerations on how to approach numerical modelling is made based on numerical simulations using MOUSE TRAP (DHI 1993).


2019 ◽  
Vol 28 (7) ◽  
pp. 1863-1883 ◽  
Author(s):  
Agustín Molina Sánchez ◽  
Patricia Delgado ◽  
Antonio González-Rodríguez ◽  
Clementina González ◽  
A. Francisco Gómez-Tagle Rojas ◽  
...  

Author(s):  
Álvaro Briz-Redón ◽  
Adina Iftimi ◽  
Juan Francisco Correcher ◽  
Jose De Andrés ◽  
Manuel Lozano ◽  
...  

GeoJournal ◽  
2021 ◽  
Author(s):  
R. Nasiri ◽  
S. Akbarpour ◽  
AR. Zali ◽  
N. Khodakarami ◽  
MH. Boochani ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Lennart Adenaw ◽  
Markus Lienkamp

In order to electrify the transport sector, scores of charging stations are needed to incentivize people to buy electric vehicles. In urban areas with a high charging demand and little space, decision-makers are in need of planning tools that enable them to efficiently allocate financial and organizational resources to the promotion of electromobility. As with many other city planning tasks, simulations foster successful decision-making. This article presents a novel agent-based simulation framework for urban electromobility aimed at the analysis of charging station utilization and user behavior. The approach presented here employs a novel co-evolutionary learning model for adaptive charging behavior. The simulation framework is tested and verified by means of a case study conducted in the city of Munich. The case study shows that the presented approach realistically reproduces charging behavior and spatio-temporal charger utilization.


Sign in / Sign up

Export Citation Format

Share Document