scholarly journals Microtopography Controls of Carbon and Related Elements Distribution in the West Siberian Frozen Bogs

Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 291 ◽  
Author(s):  
Loiko ◽  
Raudina ◽  
Lim ◽  
Kuzmina ◽  
Kulizhskiy ◽  
...  

The West Siberian Plain stands out among other boreal plains by phenomenal bogging, which has both global and regional significance. The polygonal bogs, frozen raised-mound bogs, and ombrotrophic ridge-hollow raised bogs are the most extensive bog types in the study area. These bogs commonly show highly diverse surface patterns consisting of mounds, polygons, ridges, hollows, and fens that correspond to the microtopes. Here we investigated how the microtopographic features of the landscape affect the thermal and hydrologic conditions of the soil as well as the nutrient availability and consequently, the dynamics of carbon and related elements. The effect of the surface heterogeneity on the temperature regimes and depths of permafrost is most significant. All of these factors together are reflected, through the feedback system, by a number of hydrochemical parameters of bog waters, such as dissolved organic and inorganic carbon (DOC, DIC), specific conductivity (Cond), SO42–, Cl–, P, Sr, Al, Ti, Cu, V, B, Cs, Cd, Rb, As, U, and rare earth elements (REEs). Among the studied parameters, DOC, SO42, Al, V, and Mn differ most significantly between the convex and concave microforms. The DOC content in bog water is significantly affected by the water residence time, which is significantly longer in soils of mound/polygons than fens. Plants biomass is higher on the mounds which also have some effect that, due to leaching, should lead to more carbon entering into the water of the mounds. It is also shown that atmospheric-dust particles have a noticeable effect on the hydrochemical parameters of bog waters, especially on mounds. The ongoing climate warming will lead to an increase in the fens area and to a decrease in the content of DOC and many elements in bog waters.

2017 ◽  
pp. 116-118
Author(s):  
E. A. Volkova

The monograph presents an overview of the forest-steppe vegetation of the West Siberian Plain and the Altai-Sayan mountain region. The questions of bioclimatic zonation of the Altai-Sayan mountain region are discussed. The biodiversity of foreststeppe is characterized, the floristic classification is performed, the scheme of eco-phytocoenotic classification is given, the basic types of plant communities are described in comparative terms. The diversity of forest-steppe landscapes is revealed, the structure of their vegetation is analyzed. The phytogeographical division of forest-steppe is worked out.


2017 ◽  
pp. 114-116
Author(s):  
B. M. Mirkin ◽  
L. G. Naumova

The monograph presents an overview of the forest-steppe vegetation of the West Siberian Plain and the Altai-Sayan mountain region. The questions of bioclimatic zonation of the Altai-Sayan mountain region are discussed. The biodiversity of foreststeppe is characterized, the floristic classification is performed, the scheme of eco-phytocoenotic classification is given, the basic types of plant communities are described in comparative terms. The diversity of forest-steppe landscapes is revealed, the structure of their vegetation is analyzed. The phytogeographical division of forest-steppe is worked out.


2006 ◽  
Vol 6 (1) ◽  
pp. 67-80 ◽  
Author(s):  
A. Teller ◽  
Z. Levin

Abstract. Numerical experiments were carried out using the Tel-Aviv University 2-D cloud model to investigate the effects of increased concentrations of Cloud Condensation Nuclei (CCN), giant CCN (GCCN) and Ice Nuclei (IN) on the development of precipitation and cloud structure in mixed-phase sub-tropical convective clouds. In order to differentiate between the contribution of the aerosols and the meteorology, all simulations were conducted with the same meteorological conditions. The results show that under the same meteorological conditions, polluted clouds (with high CCN concentrations) produce less precipitation than clean clouds (with low CCN concentrations), the initiation of precipitation is delayed and the lifetimes of the clouds are longer. GCCN enhance the total precipitation on the ground in polluted clouds but they have no noticeable effect on cleaner clouds. The increased rainfall due to GCCN is mainly a result of the increased graupel mass in the cloud, but it only partially offsets the decrease in rainfall due to pollution (increased CCN). The addition of more effective IN, such as mineral dust particles, reduces the total amount of precipitation on the ground. This reduction is more pronounced in clean clouds than in polluted ones. Polluted clouds reach higher altitudes and are wider than clean clouds and both produce wider clouds (anvils) when more IN are introduced. Since under the same vertical sounding the polluted clouds produce less rain, more water vapor is left aloft after the rain stops. In our simulations about 3.5 times more water evaporates after the rain stops from the polluted cloud as compared to the clean cloud. The implication is that much more water vapor is transported from lower levels to the mid troposphere under polluted conditions, something that should be considered in climate models.


2011 ◽  
Vol 436 (1) ◽  
pp. 113-116 ◽  
Author(s):  
D. N. Troshkin ◽  
M. V. Kabanov ◽  
V. E. Pavlov ◽  
A. N. Romanov

2017 ◽  
Vol 74 (5) ◽  
pp. 891-902 ◽  
Author(s):  
N. S. Moskvitina ◽  
O. Yu. Tyutenkov ◽  
A. V. Shpansky ◽  
A. V. Pugachyova ◽  
D. V. Kurbatsky

2021 ◽  
Vol 862 (1) ◽  
pp. 012069
Author(s):  
E A Korkina ◽  
M P Lebedeva ◽  
A V Rusakov ◽  
Iu A Golovleva

2011 ◽  
Vol 4 (3) ◽  
pp. 241-247 ◽  
Author(s):  
V. A. Khmelev ◽  
A. A. Titlyanova ◽  
V. P. Sedel’nikov ◽  
Yu. S. Ravkin ◽  
I. N. Bogomolova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document