scholarly journals Seasonal and Basinal Influences on the Formation and Transport of Dissolved Trace Metal Forms in a Mining-Impacted Riverine Environment

Hydrology ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 35 ◽  
Author(s):  
Jeff Langman ◽  
Kathleen Torso ◽  
James Moberly

The release of nanophase metal particles from sulfide mineral decomposition in mining-impacted environments is a growing concern because of the potential for the transport of nanoscale particles that could increase the distribution of the metals and their environmental impact. An analysis of total (unfiltered) and dissolved (450-nm filtered) metal concentrations in the mining-impacted Coeur d’Alene River indicates the leaching of dissolved metal forms from sediments and transport to and within the river. The distribution of metals between total and dissolved forms is driven by seasonal temperatures, hydraulic gradients, and ligand availability. Cd and Zn were the least influenced by changes in gradient and biological productivity between the upper and lower basins. Cd and Zn primarily travel as dissolved forms, with the lowest ratio of dissolved-to-total concentrations in spring and the highest in summer. Fe and Pb primarily travel as suspended particles, but their dissolved forms were greater during all seasons in the lower basin. A principal components analysis of upper basin data indicates that temperature and conductivity were correlated with dissolved Cd and Zn, and total Fe and Pb were correlated with streamflow. In the lower basin, dissolved Cd and Zn, conductivity, and temperature were correlated, and suspended sediment, total metals, and dissolved Pb, but not streamflow, were correlated. The correlation of metals and sediment in the lower basin is not from erosion but the availability of organic matter and Fe that form a range of dissolved to suspended metal particles. The summer decrease in surface water levels releases sediment porewater containing nanoscale-to-microscale metal particles that are transported to open water, where they may impact human and wildlife health. Such releases are unmitigated with current remediation strategies of sediment stabilization.

10.29007/1nnf ◽  
2018 ◽  
Author(s):  
Klaudia Horváth ◽  
Bart van Esch ◽  
Jorn Baayen ◽  
Ivo Pothof ◽  
Jan Talsma ◽  
...  

A decision support system for water management based on convex optimization, RTC-Tools 2, is applied for a water system containing river branches connected by weirs. The advantage of convex optimization is the ability of finding the global optimum, which makes the decision support system robust and deterministic. In this work the convex modeling of open water channels and weirs is presented. The decision support system is implemented for a river made of 12 river reaches divided by movable weirs. It is shown how the discharge wave is dispatched in the river without the water levels exceeding the bounds by controlling the weir heights. After this test the optimization can be applied to a realistic numerical model and model predictive control can be implemented.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2651
Author(s):  
Qiang Liu ◽  
Liqiao Liang ◽  
Xiaomin Yuan ◽  
Sirui Yan ◽  
Miao Li ◽  
...  

Water level fluctuations play a critical role in regulating vegetation distribution, composition, cover and richness, which ultimately affect evapotranspiration. In this study, we first explore water level fluctuations and associated impacts on vegetation, after which we assess evapotranspiration (ET) under different water levels. The normalized difference vegetation index (NDVI) was used to estimate the fractional vegetation cover (Fv), while topography- and vegetation-based surface-energy partitioning algorithms (TVET model) and potential evaporation (Ev) were used to calculate ET and water evaporation (Ep). Results show that: (1) water levels were dramatically affected by the combined effect of ecological water transfer and climate change and exhibited significant decreasing trends with a slope of −0.011 m a−2; and (2) as predicted, there was a correlation between water level fluctuation at an annual scale with Phragmites australis (P. australis) cover and open-water area. Water levels also had a controlling effect on Fv values, an increase in annual water levels first increasing and then decreasing Fv. However, a negative correlation was found between Fv values and water levels during initial plant growth stages. (iii) ET, which varied under different water levels at an annual scale, showed different partition into transpiration from P. australis and evaporation from open-water area and soil with alterations between vegetation and open water. All findings indicated that water level fluctuations controlled biological and ecological processes, and their structural and functional characteristics. This study consequently recommends that specifically-focused ecological water regulations (e.g., duration, timing, frequency) should be enacted to maintain the integrity of wetland ecosystems for wetland restoration.


1984 ◽  
Vol 62 (2) ◽  
pp. 310-316 ◽  
Author(s):  
V. J. Lieffers

Emergent vegetation was sampled in 15 oxbow lakes in a 50-km segment of the Athabasca River in northeastern Alberta. Cover of individual species was visually assessed in plots at the outer, middle, and (or) inner edge of the emergent zone of each lake (n, 37 sample units). Detrended correspondence analysis showed two main axes of variation. The first axis related to salinity. Water conductivity ranged from 170 to 12200 μS cm−1 and community types ranged from freshwater fens to saline wetland communities dominated by Scolochloa festucacea, Scirpus maritimus, and Triglochin maritima. The second axis of variation related to water-level fluctuations. Half of the lakes had an increase in water level in the recent past (ca. 6–30 years). In these lakes, Typha latifolia was dominant in both grounded and floating substrates subjected to increased water levels. Sedge communities dominated by Carex rostrata, C. aquatilis, and Acorus calamus were common in sites with stable water levels. In freshwater lakes, floating substrates were established over open water by the lateral growth of floating stems of Calla palustris and Potentilla palustris. Floating substrates were not in the saline sites probably because these open-water colonizers were not present under saline regimes.


1985 ◽  
Vol 63 (12) ◽  
pp. 2133-2137 ◽  
Author(s):  
Loren M. Smith ◽  
John A. Kadlec

Seed numbers and the species composition of seed banks (germinable seeds) from a marsh adjacent to the Great Salt Lake were compared among five vegetation types prior to a drawdown, during a drawdown, and prior to fire, after fire, and after restoration of normal water levels. Substrate samples were processed in the greenhouse under submersed and moist soil treatments to simulate the two germination conditions found in the field. After the fire, seed movement into the different vegetation types was also estimated. Numbers of germinable seeds were not depleted during the drawdown, possibly owing to increased salinity and the presence of standing vegetation. Fire had little effect on seed banks and subsequent seedling response. In general, seed banks were not affected by disturbance (e.g., burning, drawdown). The movement of seeds into the different vegetation types indicated that seed ingress could be important when one considers potential vegetation change. Seed banks of open water sites contained few germinable seeds when compared with Scirpus lacustris, S. maritimus, Distichlis spicata, and Typha spp. sites. Open water sites were devoid of vegetation and had few physical barriers, and seeds continued to move (air, water) across these areas until a barrier was reached, e.g., sites with vegetation.


1988 ◽  
Vol 25 (8) ◽  
pp. 1175-1183 ◽  
Author(s):  
J. E. Flint ◽  
R. W. Dalrymple ◽  
J. J. Flint

The sequence of units (from the base up) in the Sixteen Mile Creek lagoon (Lake Ontario) mimics the longitudinal sequence of surficial environments: pink silt—overbank (flood plain – dry marsh); bottom sand—stream channel and beach; orange silt—marsh; gyttja—wet marsh and very shallow (deltaic) lagoon; and brown and grey clay—open-water lagoon. This entire sequence accumulated over the last 4200 years under slowly deepening, transgressive conditions caused by the isostatic rise of the lake outlet. Land clearing by European settlers dramatically increased the supply of clastic sediment and terminated the deposition of the organic-rich silty clays (gyttja) that make up most of the lagoon fill.Because the gyttja and beach sand are interpreted to have accumulated in water depths of less than 0.5 m, the elevation–time plot of 14C dates from these units can be used to reconstruct a very closely constrained lake-level curve. The data indicate that water levels have risen at an average rate of 0.25 cm/a over the last 3300 years as a result of differential, isostatic rebound. Superimposed on this trend are water-level oscillations with amplitudes on the order of 1 m and periods of several hundred years. These oscillations are synchronous and in phase with water-level fluctuations in Lake Michigan, and with a variety of other climatic variations in North America and Europe. We propose, therefore, that the water-level oscillations are a result of long-term, climatically produced variations in precipitation in the Great Lakes drainage basin.


2021 ◽  
Author(s):  
Milla M. Johansson ◽  
Jan-Victor Björkqvist ◽  
Jani Särkkä ◽  
Ulpu Leijala ◽  
Kimmo K. Kahma

Abstract. Both sea level variations and wind-generated waves affect coastal flooding risks. The correlation of these two phenomena complicates the estimates of their joint effect on the exceedance levels for the continuous water mass. In the northern Baltic Sea the seasonal occurrence of sea ice further influences the situation. We analysed this correlation with 28 years (1992–2019) of sea level data, and four years (2016–2019) of wave buoy measurements from a coastal location outside the City of Helsinki, Gulf of Finland. The wave observations were complemented by 28 years of simulations with a parametric wave model. The sea levels and waves at this location show strongest positive correlation (τ = 0.5) for southwesterly winds, while for northeasterly winds the correlation is negative (−0.3). The results were qualitatively similar when only the open water period was considered, or when the ice season was included either with zero wave heights or hypothetical no-ice wave heights. We calculated the observed probability distribution of the sum of the sea level and the highest individual wave crest from the simultaneous time series. Compared to this, a probability distribution of the sum calculated by assuming that the two variables are independent underestimates the total water levels corresponding to one hour per 100 years by 0.1–1.2 m. We tested three Archimedean copulas, of which the Gumbel copula best accounted for the mutual dependence between the two variables.


2020 ◽  
Vol 6 (2) ◽  
pp. 62-76 ◽  
Author(s):  
Kevin C. Scharffenberg ◽  
Dustin Whalen ◽  
Shannon A. MacPhee ◽  
Marianne Marcoux ◽  
John Iacozza ◽  
...  

With increased warming and open water due to climate change, the frequency and intensity of storm surges is expected to increase. Although studies have shown that strong storms can negatively impact Arctic ecosystems, the impact of storms on Arctic marine mammals is relatively unknown. In July 2016, an unusually large storm occurred in the Mackenzie Delta while instrumented seabed moorings equipped with hydrophones and oceanographic sensors were in place to study environmental drivers of beluga habitat use during their summer aggregation. The storm lasted up to 88 h, with maximum wind speeds reaching 60 km/h; historical wind data from Tuktoyaktuk revealed a storm of similar duration has not occurred in July in at least the past 28 years. This provided a unique opportunity to study the impacts of large storms on oceanographic conditions, beluga habitat use, and the traditional subsistence hunt that occurs annually in the delta. The storm resulted in increased water levels and localized flooding as well as a significant drop in water temperature (∼10 °C) and caused belugas to leave the area for 5 days. Although belugas returned after the storm ended, the subsistence hunt was halted resulting in the lowest beluga harvest between 1978 and 2017.


1985 ◽  
Vol 36 (3) ◽  
pp. 329 ◽  
Author(s):  
DA Milton ◽  
AH Arthington

The reproductive biology and growth of R. semoni and A. nigripinnis were studied in Brisbane, south- eastern Queensland, over a 20-month period (1981-1982). R. semoni began to breed in winter at water temperatures exceeding 15�C, reflecting its salmoniform affinities and temperate distribution. A. nigripinnis, a subtropical species of Indo-Pacific origin, required a period of rising temperature before breeding began in spring at 22�C. Both species concentrated their breeding activity into the months that precede summer storms and high, variable stream discharges, which can generate fluctuating water levels, destruction of weedbeds and instability of the stream substrate. Pre-flood spawning also occurs in three other small-bodied native species in the region, and appears to have adaptive value in the seasonally unstable environments of coastal streams. Dispersal of juvenile fish may be facilitated by rising water levels during summer months following spawning. R. semoni grew faster and to larger sizes than A. nigripinnis and growth of both species was adequately described by the von Bertalanffy equation. Male and female R. semoni and male A. nigripinnis live and breed for 2 years but female A. nigripinnis survive and may breed into their third year. These patterns of survivorship and reproduction are consistent with the contention that natural mortality is higher in open-water foragers such as R. semoni than in species like A. nigripinnis, which tends to forage amongst littoral vegetation and in mid-water. Differences in the sizes of eggs and larvae of the two species are also consistent with the probability that they experience different relative exposure to predation. These and other attributes, coupled with pre-flood spawning, enable both species to achieve large populations in suitable habitats within coastal streams, in spite of their relatively low fecundities.


2014 ◽  
Vol 8 (5) ◽  
pp. 1777-1799 ◽  
Author(s):  
K. R. Barnhart ◽  
I. Overeem ◽  
R. S. Anderson

Abstract. Sea ice limits the interaction of the land and ocean water in the Arctic winter and influences this interaction in the summer by governing the fetch. In many parts of the Arctic, the open-water season is increasing in duration and summertime sea-ice extents are decreasing. Sea ice provides a first-order control on the physical vulnerability of Arctic coasts to erosion, inundation, and damage to settlements and infrastructures by ocean water. We ask how the changing sea-ice cover has influenced coastal erosion over the satellite record. First, we present a pan-Arctic analysis of satellite-based sea-ice concentration specifically along the Arctic coasts. The median length of the 2012 open-water season, in comparison to 1979, expanded by between 1.5 and 3-fold by Arctic Sea sector, which allows for open water during the stormy Arctic fall. Second, we present a case study of Drew Point, Alaska, a site on the Beaufort Sea, characterized by ice-rich permafrost and rapid coastal-erosion rates, where both the duration of the open-water season and distance to the sea-ice edge, particularly towards the northwest, have increased. At Drew Point, winds from the northwest result in increased water levels at the coast and control the process of submarine notch incision, the rate-limiting step of coastal retreat. When open-water conditions exist, the distance to the sea ice edge exerts control on the water level and wave field through its control on fetch. We find that the extreme values of water-level setup have increased consistently with increasing fetch.


Sign in / Sign up

Export Citation Format

Share Document