scholarly journals Analytical and Numerical Groundwater Flow Solutions for the FEMME-Modeling Environment

Hydrology ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 27 ◽  
Author(s):  
Mustafa El-Rawy ◽  
Okke Batelaan ◽  
Kerst Buis ◽  
Christian Anibas ◽  
Getachew Mohammed ◽  
...  

Simple analytical and numerical solutions for confined and unconfined groundwater-surface water interaction in one and two dimensions were developed in the STRIVE package (stream river ecosystem) as part of FEMME (flexible environment for mathematically modelling the environment). Analytical and numerical solutions for interaction between one-dimensional confined and unconfined aquifers and rivers were used to study the effects of a 0.5 m sudden rise in the river water level for 24 h. Furthermore, a two-dimensional groundwater model for an unconfined aquifer was developed and coupled with a one-dimensional hydrodynamic model. This model was applied on a 1 km long reach of the Aa River, Belgium. Two different types of river water level conditions were tested. A MODFLOW model was set up for these different types of water level condition in order to compare the results with the models implemented in STRIVE. The results of the analytical solutions for confined and unconfined aquifers were in good agreement with the numerical results. The results of the two-dimensional groundwater model developed in STRIVE also showed that there is a good agreement with the MODFLOW solutions. It is concluded that the facilities of STRIVE can be used to improve the understanding of groundwater-surface water interaction and to couple the groundwater module with other modules developed for STRIVE. With these new models STRIVE proves to be a powerful example as a development and testing environment for integrated water modeling.

1969 ◽  
Vol 22 (6) ◽  
pp. 739
Author(s):  
RL Pope

An approximate analysis of the one� dimensional expanding flow of an ideal dissociating gas, which is initially in a frozen state, is presented. The different types of solutions of the equations of the flow, for variations in the rates of expansion and recombination, are discussed. Some numerical results indicating the distances and other dimensions involved are included. The results of the approximate analysis are compared with some numerical solutions and are found to be valid for all cases in which the analysis can be expected to apply.


2019 ◽  
Vol 67 (1) ◽  
pp. 5-12
Author(s):  
Muntasir Alam ◽  
Md Shafiqul Islam

We use Galerkin weighted residual (GWR) method to solve one dimensional heat and wave equations as initial and boundary value problems (IBVPs) numerically. Three special types of piecewise polynomials namely: Bernstein, Bernoulli and Legendre polynomials are used as basis functions to solve these IBVPs. A few examples are tested by the proposed method and then the results are compared with the solutions found in other existing methods. The numerical results obtained in this paper are in good agreement with the exact solutions. Dhaka Univ. J. Sci. 67(1): 5-12, 2019 (January)


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joan Goh ◽  
Ahmad Abd. Majid ◽  
Ahmad Izani Md. Ismail

Numerical solutions of one-dimensional heat and advection-diffusion equations are obtained by collocation method based on cubicB-spline. Usual finite difference scheme is used for time and space integrations. CubicB-spline is applied as interpolation function. The stability analysis of the scheme is examined by the Von Neumann approach. The efficiency of the method is illustrated by some test problems. The numerical results are found to be in good agreement with the exact solution.


2019 ◽  
Vol 67 (6) ◽  
pp. 483-492
Author(s):  
Seonghyeon Baek ◽  
Iljae Lee

The effects of leakage and blockage on the acoustic performance of particle filters have been examined by using one-dimensional acoustic analysis and experimental methods. First, the transfer matrix of a filter system connected to inlet and outlet pipes with conical sections is measured using a two-load method. Then, the transfer matrix of a particle filter only is extracted from the experiments by applying inverse matrices of the conical sections. In the analytical approaches, the one-dimensional acoustic model for the leakage between the filter and the housing is developed. The predicted transmission loss shows a good agreement with the experimental results. Compared to the baseline, the leakage between the filter and housing increases transmission loss at a certain frequency and its harmonics. In addition, the transmission loss for the system with a partially blocked filter is measured. The blockage of the filter also increases the transmission loss at higher frequencies. For the simplicity of experiments to identify the leakage and blockage, the reflection coefficients at the inlet of the filter system have been measured using two different downstream conditions: open pipe and highly absorptive terminations. The experiments show that with highly absorptive terminations, it is easier to see the difference between the baseline and the defects.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 309-313
Author(s):  
Jan Šálek ◽  
František Marcián ◽  
Iman Elazizy

Vegetative root zone methods are based on self-purifying processes that take place in the soil, wetland and vegetation containing water media. Our studies are concentrated on the course of puryfying in relation with the length of the filtration bed and on the progress of eliminating the ammoniacal pollution. The research proved that the essential part of the puryfying process takes place within the inlet zone (Figs 1 and 2). The decomposition of ammonia proceeds very slowly. The process of nitrification is affected by the lack of oxygen in the filtration media. To improve the effectiveness of vegetative root zone methods we suggest specific steps: an adjustment of the inlet zone, a system of cascades, a water level pulsation system and combinations of different types and arrangements of vegetative root zones.


2019 ◽  
Author(s):  
Bronson McQueen ◽  
◽  
Elizabeth A. Avery ◽  
Junfeng Zhu ◽  
Alan Fryar ◽  
...  

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Satyender Singh ◽  
Prashant Dhiman

Thermal performance of a single-pass single-glass cover solar air heater consisting of semicircular absorber plate finned with rectangular longitudinal fins is investigated. The analysis is carried out for different hydraulic diameters, which were obtained by varying the diameter of the duct from 0.3–0.5 m. One to five numbers of fins are considered. Reynolds number ranges from 1600–4300. Analytical solutions for energy balance equations of different elements and duct flow of the solar air heater are presented; results are compared with finite-volume methodology based numerical solutions obtained from ansys fluent commercial software, and a fairly good agreement is achieved. Moreover, analysis is extended to check the effect of double-glass cover and the recycle of the exiting air. Results revealed that the use of double-glass cover and recycle operation improves the thermal performance of solar air heater.


Sign in / Sign up

Export Citation Format

Share Document