scholarly journals Modernized Forest Fire Risk Assessment Model Based on the Case Study of three Portuguese Municipalities Frequently Affected by Forest Fires

2020 ◽  
Vol 3 (1) ◽  
pp. 30
Author(s):  
Luis Santos ◽  
Vasco Lopes ◽  
Cecília Baptista

The number of forest fires ignitions has decreased worldwide, thus observing increased levels of intensity and destruction, endangering urban areas and causing material damages and deaths (Portugal, 2017). Forest fire hazard mapping supported by the surveillance strategy targeted at very susceptible areas with high losses potential are the common tools of fire prevention. Each municipality creates its own Forest Fire Hazard Map, and so it is observed that along the administrative boundaries, discrepancies occur, even when identical types of land use are in place. The evolution of geographic information systems technology sustained by the open-source satellite imagery, along with the innovative Habitat Risk Assessment model of the InVEST software, allowed the creation of an easily applicable trans-administrative boundary fire hazard map, with frequent update capabilities and fully open source. This work considered three municipalities (Tomar, Ourém, and Ferreira do Zêzere) that annually observe various forest fire occurrences. Results enabled the creation of a homogeneous Forest Fire Risk Map, using landuse, slope, road access network, fire ignitions’ history, visualization basins, and the Normalized Difference Vegetation Index (NDVI) as variables. All variables correlate with each other using different weights, in which the different classes of land use are considered as habitats and the remaining variables as fire hazard stressors. The results produce a coherent monthly updated Risk Map, which is an alternative to many risk assessment systems used worldwide.

FLORESTA ◽  
2020 ◽  
Vol 50 (4) ◽  
pp. 1818
Author(s):  
Bruna Kovalsyki ◽  
Alexandre França Tetto ◽  
Antonio Carlos Batista ◽  
Nilton José Sousa ◽  
Marta Regina Barrotto do Carmo ◽  
...  

Forest fire hazard and risk mapping is an essential tool for planning and decision making regarding the prevention and suppression of forest fires,as well as fire management in general, as it allows the spatial visualization of areas with higher and lower ignition probability. This study aimed to develop a forest fire risk zoning map for the Vila Velha State Park and its surroundings (Ponta Grossa, Paraná State, Brazil), for the period of higher incidence of forest fires (from April to September) and for the period of lower incidence (from October to March). The following risk and hazard variables were identified: human presence, usage zones, topographical features, soil coverage and land use and meteorological conditions. Coefficients (0 to 5) reflecting the fire risk or hazard degree were allocated to each variable in order to construct the maps. The integration of these maps, through a weighting model, resulted in the final risk mapping. The very high and extreme risk classes represented about 38% of the area for both periods. The forest fire risk mapping spatially represented the levels of fire risk in the area, allowing the managers to identify the priority sectors for preventive actions in both fire seasons.


2021 ◽  
Vol 13 (18) ◽  
pp. 3704
Author(s):  
Pengcheng Zhao ◽  
Fuquan Zhang ◽  
Haifeng Lin ◽  
Shuwen Xu

Fire risk prediction is significant for fire prevention and fire resource allocation. Fire risk maps are effective methods for quantifying regional fire risk. Laoshan National Forest Park has many precious natural resources and tourist attractions, but there is no fire risk assessment model. This paper aims to construct the forest fire risk map for Nanjing Laoshan National Forest Park. The forest fire risk model is constructed by factors (altitude, aspect, topographic wetness index, slope, distance to roads and populated areas, normalized difference vegetation index, and temperature) which have a great influence on the probability of inducing fire in Laoshan. Since the importance of factors in different study areas is inconsistent, it is necessary to calculate the significance of each factor of Laoshan. After the significance calculation is completed, the fire risk model of Laoshan can be obtained. Then, the fire risk map can be plotted based on the model. This fire risk map can clarify the fire risk level of each part of the study area, with 16.97% extremely low risk, 48.32% low risk, 17.35% moderate risk, 12.74% high risk and 4.62% extremely high risk, and it is compared with the data of MODIS fire anomaly point. The result shows that the accuracy of the risk map is 76.65%.


2020 ◽  
Vol 5 (19) ◽  
pp. 202009
Author(s):  
Tarsis Esaú Gomes Almeida ◽  
Maria do Socorro Almeida Flores ◽  
Mário Vasconcellos Sobrinho

MAPPING DISASTER RISK BY FOREST FIRE IN THE AMAZON: a multifactorial approach in the municipality of Moju (PA)MAPEO DEL RIESGO DE DESASTRE POR INCENDIO FLORESTAL EN LA AMAZONÍA: un enfoque multifactorial en el municipio de Moju (PA)RESUMONo estado do Pará o município de Moju é um dos que apresentam a maior quantidade de focos de calor conforme dados oficiais. Note-se que a base de suas atividades econômicas são a agricultura familiar e as plantações de dendê e coco-da-baía, diante disso propôs-se questionar sobre o risco não apenas da existência de incêndios florestais, mas da magnitude das consequências socioeconômicas deles. A pesquisa bibliográfica e documental em artigos acadêmicos e científicos, dissertações e teses possibilitou a compreensão do significado de mapeamento de áreas de risco de incêndio florestal identificadas no mapa de risco, bem como a possibilidade de desenvolver com base teórica e metodológica a criação de um mapeamento e ponderação de aspectos socioeconômicos expressado no mapa de vulnerabilidade, a fim de refinar um produto final na elaboração do mapa de risco de desastre. Assim, objetivo deste artigo é mostrar e discutir a incorporação de fatores sociais e econômicos na formulação dos mapas de risco de incêndio florestal. Mais precisamente, um Mapa de Risco de Desastre por Incêndio Florestal (MRDIF), que consiste na fusão entre Mapas de Risco de Incêndio Florestal e um Mapa Avaliativo Socioeconômico. Como resultado imediato da formação do MRDIF é o planejamento de ações preventivas. Percebeu-se que houve variação nas áreas de risco dos mapas com e sem a inclusão dos aspectos socioeconômicos, o que pode indicar quais sejam as áreas principais para ações a fim de diminuir os riscos ou as consequências dos possíveis desastres causados por incêndios florestais. Palavras-chave: Gestão de Risco; Incêndios Florestais; Uso do Solo na Amazônia; Cartografia.ABSTRACTIn the state of Pará, the municipality of Moju is one of those with the highest number of hot spots according to official data. It should be noted that the basis of its economic activities are family farming and oil palm and coconut plantations. In view of this, it was proposed to ask about the risk not only of the existence of forest fires, but of the magnitude of their socioeconomic consequences. Bibliographic and documentary research in academic and scientific articles, dissertations and theses made it possible to understand the meaning of mapping areas of forest fire risk identified in the risk map, as well as the possibility of developing a mapping with theoretical and methodological basis. and weighting of socioeconomic aspects expressed in the Vulnerability Map, in order to refine a final product in the preparation of the disaster risk map. Thus, the objective of this article is to show and discuss the incorporation of social and economic factors in the formulation of forest fire risk maps. More precisely, a Forest Fire Disaster Risk Map (FFDRP), which consists of the merger between Forest Fire Risk Maps and a Socioeconomic Assessment Map. As an immediate result of the formation of FFDRP is the planning of preventive actions. It was noticed that there was variation in the risk areas of the maps with and without the inclusion of socioeconomic aspects, which may indicate what are the main areas for actions in order to reduce the risks or the consequences of possible disasters caused by forest fires.Keywords: Risk Management; Fire Forest; Land Use in the Amazon; Cartography.RESUMENEn el estado de Pará, el municipio de Moju es una de las regiones con el mayor número de focos de calor según datos oficiales. Cabe señalar que la base de sus actividades económicas son la agricultura familiar y las plantaciones de palma aceitera y coco, en vista de esto, se propuso preguntar sobre el riesgo no solo de la existencia de incendios forestales, sino de la magnitud de sus consecuencias socioeconómicas. La investigación bibliográfica y documental en artículos académicos y científicos, disertaciones y tesis permitió comprender el significado de las áreas de mapeo de riesgo de incendio forestal identificadas en el mapa de riesgo, así como la posibilidad de desarrollar un mapeo con base teórica y metodológica. y ponderación de los aspectos socioeconómicos expresados en el mapa de vulnerabilidad, con el fin de refinar un producto final en la preparación del mapa de riesgo de desastres. Por lo tanto, el objetivo de este artículo es mostrar y discutir la incorporación de factores sociales y económicos en la formulación de mapas de riesgo de incendios forestales. Más precisamente, un Mapa de Riesgo de Desastres por Incendios Forestales (MRDIF), que consiste en la fusión entre Mapas de riesgo de incendios forestales y un Mapa de evaluación socioeconómica. Como resultado inmediato de la formación de MRDIF es la planificación de acciones preventivas. Se observó que hubo variación en las áreas de riesgo de los mapas con y sin la inclusión de aspectos socioeconómicos, lo que puede indicar cuáles son las principales áreas de acción para reducir los riesgos o las consecuencias de posibles desastres causados por incendios forestales.Palabras clave: Gestión de Riesgos; Incendios Florestales; Uso del Suelo en la Amazonia; Cartografía.


Author(s):  
Munkh-Erdene Altangerel ◽  
Amarsaikhan Damdinsuren ◽  
Jargaldalai Enkhtuya ◽  
Nyamjargal Erdenebaatar

Forest is an important natural resource that should be carefully protected and rationally managed. In recent years, deforestation and forest land degradation have become the main concern for forest specialists as well as policy and decision-makers dealing with environment issues. It has been found that much of the existing forests have been destroyed, mainly by shifting cultivation, timber preparation, legal and illegal logging, and forest fires. To protect and conserve the deteriorating forest, it is very important to conduct forest-related risk assessment and map the outcomes in a spatial domain. The aim of this research is to conduct a forest fire risk assessment mapping of Tujiin Nars National Park using geographic information system (GIS) and remote sensing (RS) techniques. The research approach is based on an empirical model. It includes three parameters (i.e. geomorphology, vegetation cover combustibility and human activity) that are crucial for the forest fire assessment. The results of the study can be used for different decision making processes.


2020 ◽  
Vol 3 (1) ◽  
pp. 62
Author(s):  
Abdullah E. Akay

Flooded forests are very important ecosystems that are rich in terms of their diverse flora and fauna. However, they are mostly degraded in many parts of the world, and the remaining fragmented areas are in a critical condition. Forest fires are one of the major environmental disasters that cause serious damage to forest ecosystems, and negatively affect the sustainability of forest resources. In order to minimize the potential effects of fires on forest ecosystems, forest fire risk maps should be generated, and thereby the necessary precautionary measures can be taken in these areas, according to fire risk levels. Geographical information system (GIS) techniques, integrated with multi-criteria decision analysis (MCDA) methods, can be effectively used to develop risk maps for natural hazards, such as forest fires, winter storms, floods, etc. In this study, GIS techniques integrated with an AHP (analytic hierarchy process) method were used to generate a forest fire risk map. The study was implemented in the Karacabey flooded forest, located in the city of Bursa in Turkey. In the solution process, the forest fire risk was evaluated considering two major risk factors, including stand structures (tree species, crown closure, and tree stage) and topographic factors (slope and aspect). The vegetation factor under climate control was considered, instead of directly using data of climatic elements such as temperature and humidity. The results indicated that 25.28% of the forest area was of high fire risk, while 53.17% and 21.55% was of medium and low fire risk, respectively. It was found that the most effective criterion was tree species, followed by tree stage. This aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods can be used effectively to estimate forest fire risk zones.


Author(s):  
Pham Xuan Canh

Son La is a mountainous province in the Northwest of Vietnam with many ethnic groups, and has an area of ​​14,125 km², accounting for 4.27% of the total area of ​​Vietnam. The ​​forest land accounts for 73% of the total natural area of ​​the province with 357,000 ha of forest. Among this having 4 areas of special use and the natural reserve forest. Every year, hundreds of forest fires cause huge natural, economic and ecological damages to the province. Due to the climate change, forest fires tend to increase in recent years. In order to prevent the fires, warning maps of the forest fire risk are needed. The research has analyzed mechanism and causes of the forest fires, and built a forest fire-related database with multi-layers of natural, social and economic information, in these, some layers were extracted from the Landsat 7 images. The expert method was applied for assessement and Saaty's Hierarchical Analysis (AHP) methods were applied to determine the weight for separated parameters related to forest fires. The research applied the MCA method to build a multi-indicator function with 9 parameters for establishing the forest fire risk map at the scale of 1:100,000 for provincial levels. In verifying the results by regression correlation analysis, the R2 value reached 0.71.These maps have been used for the purpose of forest fire prevention planning for Son La province.


2019 ◽  
Vol 15 (1) ◽  
pp. 9-21
Author(s):  
Abdelkader Benguerai ◽  
Khéloufi Benabdeli ◽  
Abdelkader Harizia

Abstract Algeria loses more than 20,000 hectares of forest to fire every year. The losses are costly both in terms of life and property damage, which weighs heavily on the environment and the local economy. Geomatics can complement the conventional methods used in fire hazard prevention and management. The objective of our study is to use the geographic information system (GIS) and the Remote Sensing (RS) technology to develop the fire risk assessment map of the forest massif of Zelamta located in Southeast Mascara province (Northwest Algeria). The methodology employed was an empirical model involving three parameters that can control fire behaviour: geomorphology, vegetal cover combustibility, and human activity. The obtained results can help in the decision-making process as well as provide cartographic support for forest fire prevention and management.


Author(s):  
Tatiana Sergeevna Stankevich

The paper focuses on the data on forest fires and identification of key natural and anthropogenic factors that are crucial for forest management, especially, for developing and implementing the fire safety measures. In recent decades, there have been observed the increased environmental, social and economic losses from the forest fires on a global scale, which has required stepped-up fire-fighting surveillance, especially in the preventive forest fire risk assessment. In all the variety of modern approaches aimed at assessing the fire hazards to the forests and taking into account the effecting environmental factors, most of them are based on simplified calculations and do not take into account different factors, mainly anthropological ones. The purpose of the study is to assess the forest fire risk depending on the environmental factors by using cluster analysis in conditions of instability and uncertainty. It could help applying the integrated approach to forest fire risk assessing in order to take into account both natural and anthropogenic factors in difficult conditions. To assess the forest fire risk, there were used the data obtained by MODIS spectroradiometer from January 1, 2014 to November 24, 2019: latitude; longitude; acquisition time and date. The following parameters were used as additional: Fire Weather Index; minimum distance to an inhabited locality; minimum distance to the road (highway or railway); minimum distance to the water area; holiday / day off; potential value. According to the results of the spatial distribution of forest fires and taking into account the data on the environmental factors there have been formed three clusters; there has been revealed a key relationship between the probability of a forest fire and proximity to the inhabited locality. There has been submitted the index of forest fire risk assessment (the Fire Weather and Human Index (FWHI)) based on the natural and anthropogenic impacts. Identification of social and biophysical aspects of the community exposure to fires and the adaptation of the existing fire prevention strategy will improve the forest fire safety system.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 104 ◽  
Author(s):  
Qiang Liu ◽  
Hongmao Yang ◽  
Min Liu ◽  
Rui Sun ◽  
Junhai Zhang

Cities located in the transitional zone between Taihang Mountains and North China plain run high flood risk in recent years, especially urban waterlogging risk. In this paper, we take Shijiazhuang, which is located in this transitional zone, as the study area and proposed a new flood risk assessment model for this specific geographical environment. Flood risk assessment indicator factors are established by using the digital elevation model (DEM), along with land cover, economic, population, and precipitation data. A min-max normalization method is used to normalize the indices. An analytic hierarchy process (AHP) method is used to determine the weight of each normalized index and the geographic information system (GIS) spatial analysis tool is adopted for calculating the risk map of flood disaster in Shijiazhuang. This risk map is consistent with the reports released by Hebei Provincial Water Conservancy Bureau and can provide reference for flood risk management.


Sign in / Sign up

Export Citation Format

Share Document