scholarly journals Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure to Fine Particulate Matter in the Contiguous U.S. and a Real-Time Web Application

Author(s):  
Lixin Li ◽  
Xiaolu Zhou ◽  
Marc Kalo ◽  
Reinhard Piltner
Author(s):  
Hyungyu Park ◽  
Seonghyun Park ◽  
Janghoo Seo

Fine particulate matter entering the body through breathing cause serious damage to humans. In South Korea, filter-type air purifiers are used to eliminate indoor fine particulate matter, and there has been a broad range of studies on the spread of fine particulate matter and air purifiers. However, earlier studies have not evaluated an operating method of air purifiers considering the inflow of fine particulate matter into the body or reduction performance of the concentration of fine particulate matter. There is a limit to controlling the concentration of fine particulate matter of the overall space where an air purifier is fixed in one spot as the source of indoor fine particulate matter is varied. Accordingly, this study analyzed changes in the concentration of indoor fine particulate matter through an experiment according to the discharging method and location of a fixed air purifier considering the inflow route of fine particulate matter into the body and their harmfulness. The study evaluated the purifiers’ performance in reducing the concentration of fine particulate matter in the occupants’ breathing zone according to the operation method in which a movable air purifier responds to the movement of occupants. The results showed the concentration of fine particulate matter around the breathing zone of the occupants had decreased by about 51 μg/m3 compared to the surrounding concentration in terms of the operating method in which an air purifier tracks occupants in real-time, and a decrease of about 68 μg/m3 in terms of the operating method in which an air purifier controls the zone. On the other hand, a real-time occupant tracking method may face a threshold due to the moving path of an air purifier and changes in the number of occupants. A zone controlling method is deemed suitable as an operating method of a movable air purifier to reduce the concentration of fine particulate matter in the breathing zone of occupants.


2021 ◽  
Author(s):  
Drew C. Pendergrass ◽  
Daniel J. Jacob ◽  
Shixian Zhai ◽  
Jhoon Kim ◽  
Ja-Ho Koo ◽  
...  

Abstract. We use 2011–2019 aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) instrument over East Asia to infer 24-h daily surface fine particulate matter (PM2.5) concentrations at continuous 6x6 km2 resolution over eastern China, South Korea, and Japan. This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data and trained with PM2.5 observations from the three national networks. The predicted 24-h PM2.5 concentrations for sites entirely withheld from training in a ten-fold crossvalidation procedure correlate highly with network observations (R2 = 0.89) with single-value precision of 26–32 % depending on country. Prediction of annual mean values has R2 = 0.96 and single-value precision of 12 %. The RF algorithm is only moderately successful for diagnosing local exceedances of the National Ambient Air Quality Standard (NAAQS) because these exceedances are typically within the single-value precisions of the RF, and also because of RF smoothing of extreme PM2.5 concentrations. The area-weighted and population-weighted trends of RF PM2.5 concentrations for eastern China, South Korea, and Japan show steady 2015–2019 declines consistent with surface networks, but the surface networks in eastern China and South Korea underestimate population exposure. Further examination of RF PM2.5 fields for South Korea identifies hotspots where surface network sites were initially lacking and shows 2015–2019 PM2.5 decreases across the country except for flat concentrations in the Seoul metropolitan area. Inspection of monthly PM2.5 time series in Beijing, Seoul, and Tokyo shows that the RF algorithm successfully captures observed seasonal variations of PM2.5 even though AOD and PM2.5 often have opposite seasonalities. Application of the RF algorithm to urban pollution episodes in Seoul and Beijing demonstrates high skill in reproducing the observed day-to-day variations in air quality as well as spatial patterns on the 6 km scale. Comparison to a CMAQ simulation for the Korean peninsula demonstrates the value of the continuous RF PM2.5 fields for testing air quality models, including over North Korea where they offer a unique resource.


2021 ◽  
pp. 118598
Author(s):  
Ashutosh K. Shukla ◽  
Vipul Lalchandani ◽  
Deepika Bhattu ◽  
Jay S. Dave ◽  
Pragati Rai ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ramachandran Prasannavenkatesh ◽  
Ramachandran Andimuthu ◽  
Palanivelu Kandasamy ◽  
Geetha Rajadurai ◽  
Divya Subash Kumar ◽  
...  

Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.


Sign in / Sign up

Export Citation Format

Share Document