scholarly journals A Dynamic Shelter Location and Victim Resettlement Model Considering Equitable Waiting Costs

Author(s):  
Donghai Wang ◽  
Menghao Xi ◽  
Yingzhen Chen

Catastrophic natural disasters cause devastating damage and leave a huge number of homeless people. Waiting for resettlement in a post-disaster environment brings human suffering, which is defined by waiting cost in this paper. Taking into account waiting cost and fairness consideration simultaneously, a mixed integer linear programming model is constructed for the multiperiod location-allocation process. Two fairness indicators are incorporated to guarantee both the whole-process equity and the periodic equity. The model is implemented in the General Algebraic Modeling System (GAMS) and solved by the CPLEX solver. An illustrative example is provided to explain the model characteristics. Furthermore, a case study of the Yushu earthquake is conducted to demonstrate the applicability of the model to practical problems.

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3781
Author(s):  
Sergio García García ◽  
Vicente Rodríguez Montequín ◽  
Henar Morán Palacios ◽  
Adriano Mones Bayo

Off-gas is one of the by-products of the steelmaking process. Its potential energy can be transformed into heat and electricity by means of cogeneration. A case study using a coke oven and Linz–Donawitz converter gas is presented. This work addresses the gas allocation problem for a cogeneration system producing steam and electricity. In the studied facility, located in northern Spain, the annual production of the plant requires 95,000 MWh of electrical energy and 525,000 MWh of thermal energy. The installed electrical and thermal power is 20.4 MW and 81 MW, respectively. A mixed integer linear programming model is built to optimize gas allocation, thus maximizing its benefits. This model is applied to a 24-h scenario with real data from the plant, where gas allocation decision-making was performed by the plant operators. Application of the model generated profit in a scenario where there were losses, increasing benefits by 16.9%. A sensitivity analysis is also performed. The proposed model is useful not only from the perspective of daily plant operation but also as a tool to simulate different design scenarios, such as the capacity of gasholders.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Li Luo ◽  
Jialing Li ◽  
Xueru Xu ◽  
Wenwu Shen ◽  
Lin Xiao

Beds are key, scarce medical resources in hospitals. The bed occupancy rate (BOR) amongst different departments within large tertiary hospitals is very imbalanced, a situation which has led to problems between the supply of and the demand for bed resources. This study aims to balance the utilization of existing beds in a large tertiary hospital in China. We developed a data-driven hybrid three-stage framework incorporating data analysis, simulation, and mixed integer programming to minimize the gaps in BOR among different departments. The first stage is to calculate the length of stay (LOS) and BOR of each department and identify the departments that need to be allocated beds. In the second stage, we used a fitted arrival distribution and median LOS as the input to a generic simulation model. In the third stage, we built a mixed integer programming model using the results obtained in the first two stages to generate the optimal bed allocation strategy for different departments. The value of the objective function, Z, represents the severity of the imbalance in BOR. Our case study demonstrated the effectiveness of the proposed data-driven hybrid three-stage framework. The results show that Z decreases from 0.7344 to 0.0409 after re-allocation, which means that the internal imbalance has eased. Our framework provides hospital bed policy makers with a feasible solution for bed allocation.


Transport ◽  
2021 ◽  
Vol 36 (6) ◽  
pp. 444-462
Author(s):  
Jiaming Liu ◽  
Bin Yu ◽  
Wenxuan Shan ◽  
Baozhen Yao ◽  
Yao Sun

The yard template problem in container ports determines the assignment of space to store containers for the vessels, which could impact container truck paths. Actually, the travel time of container truck paths is uncertain. This paper considers the uncertainty from two perspectives: (1) the yard congestion in the context of yard truck interruptions, (2) the correlation among adjacent road sections (links). A mixed-integer programming model is proposed to minimize the travel time of container trucks. The reliable shortest path, which takes the correlation among links into account is firstly discussed. To settle the problem, a Shuffled Complex Evolution Approach (SCE-UA) algorithm is designed to work out the assignment of yard template, and the A* algorithm is presented to find the reliable shortest path according to the port operator’s attitude. In our case study, one yard in Dalian (China) container port is chosen to test the applicability of the model. The result shows the proposed model can save 9% of the travel time of container trucks, compared with the model without considering the correlation among adjacent links.


2021 ◽  
Vol 19 (1) ◽  
pp. 892-917
Author(s):  
Yessica Andrea Mercado ◽  
◽  
César Augusto Henao ◽  
Virginia I. González

<abstract> <p>Considering an uncertain demand, this study evaluates the potential benefits of using a multiskilled workforce through a k-chaining policy with $k \ge 2$. For the service sector and, particularly for the retail industry, we initially propose a deterministic mixed-integer linear programming model that determines how many employees should be multiskilled, in which and how many departments they should be trained, and how their weekly working hours will be assigned. Then, the deterministic model is reformulated using a two-stage stochastic optimization (TSSO) model to explicitly incorporate the uncertain personnel demand. The methodology is tested for a case study using real and simulated data derived from a Chilean retail store. We also compare the TSSO approach solutions with the myopic approaches' solutions (i.e., zero and total multiskilling). The case study is oriented to answer two key questions: how much multiskilling to add and how to add it. Results show that TSSO approach solutions always report maximum reliability for all levels of demand variability considered. It was also observed that, for high levels of demand variability, a k-chaining policy with $k \ge 2$ is more cost-effective than a 2-chaining policy. Finally, to evaluate the conservatism level in the solutions reported by the TSSO approach, two truncation types in the probability density function (pdf) associated with the personnel demand were considered. Results show that, if the pdf is only truncated at zero (more conservative truncation) the levels of required multiskilling are higher than when the pdf is truncated at 5th and 95th percentiles (less conservative truncation).</p> </abstract>


2019 ◽  
Vol 11 (17) ◽  
pp. 4713 ◽  
Author(s):  
Yuping Lin ◽  
Kai Zhang ◽  
Zuo-Jun Max Shen ◽  
Lixin Miao

In 2017, Shenzhen replaced all its buses with battery e-buses (electric buses) and has become the first all-e-bus city in the world. Systematic planning of the supporting charging infrastructure for the electrified bus transportation system is required. Considering the number of city e-buses and the land scarcity, large-scale bus charging stations were preferred and adopted by the city. Compared with other EVs (electric vehicles), e-buses have operational tasks and different charging behavior. Since large-scale electricity-consuming stations will result in an intense burden on the power grid, it is necessary to consider both the transportation network and the power grid when planning the charging infrastructure. A cost-minimization model to jointly determine the deployment of bus charging stations and a grid connection scheme was put forward, which is essentially a three-fold assignment model. The problem was formulated as a mixed-integer second-order cone programming model, and a “No R” algorithm was proposed to improve the computational speed further. Computational studies, including a case study of Shenzhen, were implemented and the impacts of EV technology advancements on the cost and the infrastructure layout were also investigated.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Liqiao Ning ◽  
Peng Zhao ◽  
Wenkai Xu ◽  
Ke Qiao

When travelling via metro networks during the start- or end-of-service period, transferring passengers may suffer a transfer failure. Accordingly, the synchronization timetabling problem necessitates consideration of transfer waiting time and transfer availability with respect to the first or last train. Hence, transfer train index (TTI) is formulated to identify the transfer train and calculate the transfer waiting time. Furthermore, two types of connection indexes, the last connection train index (LCTI) and the first connection train index (FCTI), are devised to distinguish transfer failure from transfer success, and the penalty constraints are implemented together to reflect the adverse effects of transfer failure. Then, a mixed integer programming model is developed to concurrently reduce transfer waiting time and improve transfer availability, which can be solved by CPLEX. Finally, a case study on Beijing metro network is made to verify the method. Experimental results show that our proposed model can yield synchronization solutions with significant reductions in both the average transfer waiting time and the proportion of transfer failure passengers.


Sign in / Sign up

Export Citation Format

Share Document