scholarly journals Exploring the Environmental Exposure to Methoxychlor, α-HCH and Endosulfan–sulfate Residues in Lake Naivasha (Kenya) Using a Multimedia Fate Modeling Approach

Author(s):  
Yasser Abbasi ◽  
Chris M. Mannaerts

Distribution of pesticide residues in the environment and their transport to surface water bodies is one of the most important environmental challenges. Fate of pesticides in the complex environments, especially in aquatic phases such as lakes and rivers, is governed by the main properties of the contaminants and the environmental properties. In this study, a multimedia mass modeling approach using the Quantitative Water Air Sediment Interaction (QWASI) model was applied to explore the fate of organochlorine pesticide residues of methoxychlor, α-HCH and endosulfan–sulfate in the lake Naivasha (Kenya). The required physicochemical data of the pesticides such as molar mass, vapor pressure, air–water partitioning coefficient (KAW), solubility, and the Henry’s law constant were provided as the inputs of the model. The environment data also were collected using field measurements and taken from the literature. The sensitivity analysis of the model was applied using One At a Time (OAT) approach and calibrated using measured pesticide residues by passive sampling method. Finally, the calibrated model was used to estimate the fate and distribution of the pesticide residues in different media of the lake. The result of sensitivity analysis showed that the five most sensitive parameters were KOC, logKow, half-life of the pollutants in water, half-life of the pollutants in sediment, and KAW. The variations of outputs for the three studied pesticide residues against inputs were noticeably different. For example, the range of changes in the concentration of α-HCH residue was between 96% to 102%, while for methoxychlor and endosulfan-sulfate it was between 65% to 125%. The results of calibration demonstrated that the model was calibrated reasonably with the R2 of 0.65 and RMSE of 16.4. It was found that methoxychlor had a mass fraction of almost 70% in water column and almost 30% of mass fraction in the sediment. In contrast, endosulfan–sulfate had highest most fraction in the water column (>99%) and just a negligible percentage in the sediment compartment. α-HCH also had the same situation like endosulfan–sulfate (e.g., 99% and 1% in water and sediment, respectively). Finally, it was concluded that the application of QWASI in combination with passive sampling technique allowed an insight to the fate process of the studied OCPs and helped actual concentration predictions. Therefore, the results of this study can also be used to perform risk assessment and investigate the environmental exposure of pesticide residues.

2015 ◽  
Vol 18 (2) ◽  
pp. 132-144
Author(s):  
Trang Thi Nhu Tran ◽  
Ty Thi Pham ◽  
Hai Lam Son Truong

The first time in Vietnam a passive sampling method has been developed to analyse the polar pesticides in surface water. The initial investigations of POCIS were performed for 7 polar pesticides as simazine,thiodicarb, carbofuran, chlortoluron, atrazine, isoproturon, and diuron. We determined the sampling rates RS for these substances ranged from 0.369 to 0.962 L day- 1. The obtained values of ku and RS showed the important influence of environmental factors such as flow on the ability to integrate polar pesticides in passive sampling process. This method can be applied to determine these 7 polar pesticides in surface water at trace levels according to European standards for pesticide residues in water (< 0.1 μg L-1).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei-Jen Huang ◽  
Ming-Ta Lee ◽  
Kuei-Chen Huang ◽  
Kai-Jung Kao ◽  
Ming-An Lee ◽  
...  

AbstractThe release of anthropogenic radiocesium to the North Pacific Ocean (NPO) has occurred in the past 60 years. Factors controlling 137Cs (half-life, 30.2 year) and 134Cs (half-life, 2.06 year) activity concentrations in the Kuroshio east of Taiwan and the Taiwan Strait (latitude 20° N–27° N, longitude 116° E–123° E) remain unclear. This study collected seawater samples throughout this region and analyzed 134Cs and 137Cs activity concentrations between 2018 and 2019. A principal component analysis (PCA) was performed to analyze the controlling factors of radiocesium. Results of all 134Cs activity concentrations were below the detection limit (0.5 Bq m−3). Analyses of water column 137Cs profiles revealed a primary concentration peak (2.1–2.2 Bq m−3) at a depth range of 200–400 m (potential density σθ: 25.3 to 26.1 kg m−3). The PCA result suggests that this primary peak was related to density layers in the water column. A secondary 137Cs peak (1.90 Bq m−3) was observed in the near-surface waters (σθ = 18.8 to 21.4 kg m−3) and was possibly related to upwelling and river-to-sea mixing on the shelf. In the Taiwan Strait, 137Cs activity concentrations in the near-surface waters were higher in the summer than in the winter. We suggest that upwelling facilitates the vertical transport of 137Cs at the shelf break of the western NPO.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Johnson Stanley ◽  
Subramanian Chandrasekaran ◽  
Gnanadhas Preetha ◽  
Sasthakutty Kuttalam ◽  
R. Sheeba Jasmine

Diafenthiuron is an effective insecticide used for pest management in cardamom. Residues of diafenthiuron and its degradation/dissipation pattern in cardamom were determined to work out safe waiting period. Samples were collected after three sprays of diafenthiuron @ 400 and 800 g a.i ha−1 and the residues extracted in acetonitrile and quantified in normal phase HPLC in UV detector. Diafenthiuron was detected in 6.61±0.1 min. The limits of detection (LOD) and limits of quantification (LOQ) were determined to be 0.01 and 0.05 μgmL−1. The initial deposits were found to be 3.82 and 4.10 μg g−1 after sprays of diafenthiuron @ 400 g a.i ha−1 in the first and second experiments, respectively. Nearly cent percent of residues dissipated at 10 days after treatment in the recommended dose of diafenthiuron 400 g a.i ha−1 and the half life varied from 2.0 to 2.8 days with a waiting period of 5.5 to 6.7 days in green capsules of cardamom. The waiting period was 5.4 to 7.0 days in cured capsules of cardamom. With harvest being the focal point for enforcement of residue tolerances, the suggested waiting period of seven days is safe without the problem of pesticide residues in harvestable produce.


Sign in / Sign up

Export Citation Format

Share Document