scholarly journals Assessment of Landslide Susceptibility Based on Multiresolution Image Segmentation and Geological Factor Ratings

Author(s):  
GongHao Duan ◽  
JunChi Zhang ◽  
Shuiping Zhang

Evaluating the susceptibility of regional landslides is one of the core steps in spatial landslide prediction. Starting from multiresolution image segmentation and object-oriented classification theory, this paper uses the four parameters of entropy, energy, correlation, and contrast from remote-sensing images in the Zigui–Badong section of Three Gorges Reservoir as image texture factors; the original image data for the study area were divided into 2279 objects after segmentation. According to the various indicators of the existing historical landslide database in the Three Gorges Reservoir area, combined with the classification processing steps for different types of multistructured data, the relevant geological evaluation factors, including the slope gradient, slope structure, and engineering rock group, were rated based on expert experience. From the perspective of the object-oriented segmentation of multiresolution images and geological factor rating classification, the C5.0 decision tree susceptibility classification model was constructed for the prediction of four types of landslide susceptibility units in the Zigui–Badong section. The mapping results show that the engineering rock group of a high-susceptibility unit usually develops in soft rock or soft–hard interphase rock groups, and the slope is between 15°–30°. The model results show that the average accuracy is 91.64%, and the kappa coefficients are 0.84 and 0.51, indicating that the C5.0 decision tree algorithm provides good accuracy and can clearly divide landslide susceptibility levels for a specific area, respectively. This landslide susceptibility classification, based on multiresolution image segmentation and geological factor classification, has potential applicability.

2018 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Yingxu Song ◽  
Ruiqing Niu ◽  
Shiluo Xu ◽  
Runqing Ye ◽  
Ling Peng ◽  
...  

The main goal of this study is to produce a landslide susceptibility map in the Wanzhou section of the Three Gorges reservoir area (China) with a weighted gradient boosting decision tree (weighted GBDT) model. According to the current research on landslide susceptibility mapping (LSM), the GBDT method is rarely used in LSM. Furthermore, previous studies have rarely considered the imbalance of landslide samples and simply regarded the LSM problem as a binary classification problem. In this paper, we considered LSM as an imbalanced learning problem and obtained a better predictive model using the weighted GBDT method. The innovations of the article mainly include the following two points: introducing the GBDT model into the evaluation of landslide susceptibility; using the weighted GBDT method to deal with the problem of landslide sample imbalance. The logistic regression (LR) model and gradient boosting decision tree (GBDT) model were also used in the study to compare with the weighted GBDT model. Five kinds of data from different data source were used in the study: geology, topography, hydrology, land cover, and triggered factors (rainfall, earthquake, land use, etc.). Twenty nine environmental parameters and 233 landslides were used as input data. The receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC) value, and the recall value were used to estimate the quality of the weighted GBDT model, the GBDT model, and the LR model. The results showed that the GBDT model and the weighted GBDT model had a higher AUC value (0.977, 0.976) than the LR model (0.845); the weighted GBDT model had a little higher AUC value (0.977) than the GBDT model (0.976); and the weighted GBDT model had a higher recall value (0.823) than the GBDT model (0.426) and the LR model (0.004). The weighted GBDT method could be considered to have the best performance considering the AUC value and the recall value in landslide susceptibility mapping dealing with imbalanced landslide data.


Sign in / Sign up

Export Citation Format

Share Document