scholarly journals Effect of COVID-19 Non-Pharmaceutical Interventions and the Implications for Human Rights

Author(s):  
Seung-Hun Hong ◽  
Ha Hwang ◽  
Min-Hye Park

In response to the COVID-19 pandemic, many governments swiftly decided to order nationwide lockdowns based on limited evidence that such extreme measures were effective in containing the epidemic. A growing concern is that governments were given little time to adopt effective and proportional interventions protecting citizens’ lives while observing their freedom and rights. This paper examines the effectiveness of non-pharmaceutical interventions (NPIs) in containing COVID-19, by conducting a linear regression over 108 countries, and the implication for human rights. The regression results are supported by evidence that shows the change in 10 selected countries’ responding strategies and their effects as the confirmed cases increase. We found that school closures are effective in containing COVID-19 only when they are implemented along with complete contact tracing. Our findings imply that to contain COVID-19 effectively and minimize the risk of human rights abuses, governments should consider implementing prudently designed full contact tracing and school closure policies, among others. Minimizing the risk of human rights abuses should be a principle even when full contact tracing is implemented.

2020 ◽  
Author(s):  
Ha Hwang ◽  
Seung-Hun Hong ◽  
Min-Hye Park

Abstract In response to the COVID-19 pandemic, many governments have implemented non-pharmaceutical interventions (NPIs) to curb rapid virus transmission. A growing concern is that such interventions, aimed at ensuring public safety, may severely restrain fundamental human rights. This paper examines which NPIs are more effective than others in containing COVID-19 with the consideration of their threat to human rights. After classifying NPIs into three categories according to their threat to human rights: the right to freedom of movement, the right to freedom of assembly, and the right to privacy, this paper conducts linear regression analyses on the effectiveness of NPIs in containing COVID-19 over 108 countries. This paper finds that school closure is effective in containing COVID-19 only when it is implemented along with complete contact tracing. We confirm the results of the regression analysis by examining the changes in the cumulated number of confirmed cases and the changes of NPIs in ten selected countries. Our findings imply that to contain COVID-19 effectively and minimize the risk of human rights abuse, governments should consider implementing prudently designed full contact tracing and school closure policies, among others. Other interventions limiting freedom of movement and assembly should be carefully adopted with minimal infringement of human rights.


2021 ◽  
Author(s):  
Marcelo Eduardo Borges ◽  
Leonardo Souto Ferreira ◽  
Silas Poloni ◽  
Ângela Maria Bagattini ◽  
Caroline Franco ◽  
...  

Among the various non–pharmaceutical interventions implemented in response to the Covid–19 pandemic during 2020, school closures have been in place in several countries to reduce infection transmission. Nonetheless, the significant short and long–term impacts of prolonged suspension of in–person classes is a major concern. There is still considerable debate around the best timing for school closure and reopening, its impact on the dynamics of disease transmission, and its effectiveness when considered in association with other mitigation measures. Despite the erratic implementation of mitigation measures in Brazil, school closures were among the first measures taken early in the pandemic in most of the 27 states in the country. Further, Brazil delayed the reopening of schools and stands among the countries in which schools remained closed for the most prolonged period in 2020. To assess the impact of school reopening and the effect of contact tracing strategies in rates of Covid–19 cases and deaths, we model the epidemiological dynamics of disease transmission in 3 large urban centers in Brazil under different epidemiological contexts. We implement an extended SEIR model stratified by age and considering contact networks in different settings – school, home, work, and elsewhere, in which the infection transmission rate is affected by various intervention measures. After fitting epidemiological and demographic data, we simulate scenarios with increasing school transmission due to school reopening. Our model shows that reopening schools results in a non–linear increase of reported Covid-19 cases and deaths, which is highly dependent on infection and disease incidence at the time of reopening. While low rates of within[&ndash]school transmission resulted in small effects on disease incidence (cases/100,000 pop), intermediate or high rates can severely impact disease trends resulting in escalating rates of new cases even if other interventions remain unchanged. When contact tracing and quarantining are restricted to school and home settings, a large number of daily tests is required to produce significant effects of reducing the total number of hospitalizations and deaths. Our results suggest that policymakers should carefully consider the epidemiological context and timing regarding the implementation of school closure and return of in-person school activities. Also, although contact tracing strategies are essential to prevent new infections and outbreaks within school environments, our data suggest that they are alone not sufficient to avoid significant impacts on community transmission in the context of school reopening in settings with high and sustained transmission rates.


Author(s):  
Amit Summan ◽  
Arindam Nandi

Non-pharmaceutical interventions (NPIs) that encourage physical distancing can decrease and delay the transmission of COVID-19. They have been implemented globally during the pandemic, however, the specific NPIs implemented and the timing of interventions has varied widely. We validated two published datasets on the implementation of NPIs globally. The health and socioeconomic factors associated with delay in implementation of NPIs was analyzed using fractional logit and probit models, and beta regression models. The probability of timely NPI implementation by a country was analyzed using a probit model. The effects of these interventions on mobility changes using Google social mobility reports, were analyzed with propensity score matching methods. Three NPIs were analyzed: national school closure, national lockdown, and global travel ban. Countries with higher incomes, larger populations, and better health preparedness measures had greater delays in implementation. Countries with greater population density, more democratic political systems, lower case detection capacity, and later arrival of first cases were more likely to implement NPIs. Implementation of lockdowns significantly reduced physical mobility. Mobility was further reduced when lockdowns were enforced with curfews or fines, or were more strictly defined. National school closures did not significantly change mobility. The implementation of NPIs is a global public good during pandemics, and the international community needs to address constraints and design incentives so countries implement NPIs in a timely manner. Further analysis is needed on the effect of NPI variations on mobility and transmission, and their associated costs.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11211
Author(s):  
Adam A.C. Burns ◽  
Alexander Gutfraind

Background Non-pharmaceutical interventions such as social distancing, school closures and travel restrictions are often implemented to control outbreaks of infectious diseases. For influenza in schools, the Center of Disease Control (CDC) recommends that febrile students remain isolated at home until they have been fever-free for at least one day and a related policy is recommended for SARS-CoV-2 (COVID-19). Other authors proposed using a school week of four or fewer days of in-person instruction for all students to reduce transmission. However, there is limited evidence supporting the effectiveness of these interventions. Methods We introduced a mathematical model of school outbreaks that considers both intervention methods. Our model accounts for the school structure and schedule, as well as the time-progression of fever symptoms and viral shedding. The model was validated on outbreaks of seasonal and pandemic influenza and COVID-19 in schools. It was then used to estimate the outbreak curves and the proportion of the population infected (attack rate) under the proposed interventions. Results For influenza, the CDC-recommended one day of post-fever isolation can reduce the attack rate by a median (interquartile range) of 29 (13–59)%. With 2 days of post-fever isolation the attack rate could be reduced by 70 (55–85)%. Alternatively, shortening the school week to 4 and 3 days reduces the attack rate by 73 (64–88)% and 93 (91–97)%, respectively. For COVID-19, application of post-fever isolation policy was found to be less effective and reduced the attack rate by 10 (5–17)% for a 2-day isolation policy and by 14 (5–26)% for 14 days. A 4-day school week would reduce the median attack rate in a COVID-19 outbreak by 57 (52–64)%, while a 3-day school week would reduce it by 81 (79–83)%. In both infections, shortening the school week significantly reduced the duration of outbreaks. Conclusions Shortening the school week could be an important tool for controlling influenza and COVID-19 in schools and similar settings. Additionally, the CDC-recommended post-fever isolation policy for influenza could be enhanced by requiring two days of isolation instead of one.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yang Liu ◽  
◽  
Christian Morgenstern ◽  
James Kelly ◽  
Rachel Lowe ◽  
...  

Abstract Background Non-pharmaceutical interventions (NPIs) are used to reduce transmission of SARS coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). However, empirical evidence of the effectiveness of specific NPIs has been inconsistent. We assessed the effectiveness of NPIs around internal containment and closure, international travel restrictions, economic measures, and health system actions on SARS-CoV-2 transmission in 130 countries and territories. Methods We used panel (longitudinal) regression to estimate the effectiveness of 13 categories of NPIs in reducing SARS-CoV-2 transmission using data from January to June 2020. First, we examined the temporal association between NPIs using hierarchical cluster analyses. We then regressed the time-varying reproduction number (Rt) of COVID-19 against different NPIs. We examined different model specifications to account for the temporal lag between NPIs and changes in Rt, levels of NPI intensity, time-varying changes in NPI effect, and variable selection criteria. Results were interpreted taking into account both the range of model specifications and temporal clustering of NPIs. Results There was strong evidence for an association between two NPIs (school closure, internal movement restrictions) and reduced Rt. Another three NPIs (workplace closure, income support, and debt/contract relief) had strong evidence of effectiveness when ignoring their level of intensity, while two NPIs (public events cancellation, restriction on gatherings) had strong evidence of their effectiveness only when evaluating their implementation at maximum capacity (e.g. restrictions on 1000+ people gathering were not effective, restrictions on < 10 people gathering were). Evidence about the effectiveness of the remaining NPIs (stay-at-home requirements, public information campaigns, public transport closure, international travel controls, testing, contact tracing) was inconsistent and inconclusive. We found temporal clustering between many of the NPIs. Effect sizes varied depending on whether or not we included data after peak NPI intensity. Conclusion Understanding the impact that specific NPIs have had on SARS-CoV-2 transmission is complicated by temporal clustering, time-dependent variation in effects, and differences in NPI intensity. However, the effectiveness of school closure and internal movement restrictions appears robust across different model specifications, with some evidence that other NPIs may also be effective under particular conditions. This provides empirical evidence for the potential effectiveness of many, although not all, actions policy-makers are taking to respond to the COVID-19 pandemic.


Author(s):  
Amit Summan ◽  
Arindam Nandi

AbstractIn the early stages of a pandemic, non-pharmaceutical interventions (NPIs) that encourage physical distancing and reduce contact can decrease and delay disease transmission. Although NPIs have been implemented globally during the COVID-19 pandemic, their intensity and timing have varied widely. This paper analyzed the country-level determinants and effects of NPIs during the early stages of the pandemic (January 1st to April 29th, 2020). We examined countries that had implemented NPIs within 30 or 45 days since first case detection, as well as countries in which 30 or 45 days had passed since first case detection. The health and socioeconomic factors associated with delay in implementation of three NPIs—national school closure, national lockdown, and global travel ban—were analyzed using fractional logit and probit models, and beta regression models. The probability of implementation of national school closure, national lockdown, and strict national lockdown by a country was analyzed using a probit model. The effects of these three interventions on mobility changes were analyzed with propensity score matching methods using Google’s social mobility reports. Countries with larger populations and better health preparedness measures had greater delays in implementation. Countries with greater population density, higher income, more democratic political systems, and later arrival of first cases were more likely to implement NPIs within 30 or 45 days of first case detection. Implementation of lockdowns significantly reduced physical mobility. Mobility was further reduced when lockdowns were enforced with curfews or fines, or when they were more strictly defined. National school closures did not significantly change mobility.


Author(s):  
Yang Liu ◽  
Christian Morgenstern ◽  
James Kelly ◽  
Rachel Lowe ◽  
Mark Jit ◽  
...  

Introduction: Non-pharmaceutical interventions (NPIs) are used to reduce transmission of SARS coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). However, empirical evidence of the effectiveness of specific NPIs has been inconsistent. We assessed the effectiveness of NPIs around internal containment and closure, international travel restrictions, economic measures, and health system actions on SARS-CoV-2 transmission in 130 countries and territories. Methods: We used panel (longitudinal) regression to estimate the effectiveness of 13 categories of NPIs in reducing SARS-CoV-2 transmission with data from January - June 2020. First, we examined the temporal association between NPIs using hierarchical cluster analyses. We then regressed the time-varying reproduction number (Rt) of COVID-19 against different NPIs. We examined different model specifications to account for the temporal lag between NPIs and changes in Rt, levels of NPI intensity, time-varying changes in NPI effect and variable selection criteria. Results were interpreted taking into account both the range of model specifications and temporal clustering of NPIs. Results: There was strong evidence for an association between two NPIs (school closure, internal movement restrictions) and reduced Rt. Another three NPIs (workplace closure, income support and debt/contract relief) had strong evidence of effectiveness when ignoring their level of intensity, while two NPIs (public events cancellation, restriction on gatherings) had strong evidence of their effectiveness only when evaluating their implementation at maximum capacity (e.g., restrictions on 1000+ people gathering were not effective, restrictions on <10 people gathering was). Evidence supporting the effectiveness of the remaining NPIs (stay-at-home requirements, public information campaigns, public transport closure, international travel controls, testing, contact tracing) was inconsistent and inconclusive. We found temporal clustering between many of the NPIs. Conclusion: Understanding the impact that specific NPIs have had on SARS-CoV-2 transmission is complicated by temporal clustering, time-dependent variation in effects and differences in NPI intensity. However, the effectiveness of school closure and internal movement restrictions appears robust across different model specifications taking into account these effects, with some evidence that other NPIs may also be effective under particular conditions. This provides empirical evidence for the potential effectiveness of many although not all the actions policy-makers are taking to respond to the COVID-19 pandemic.


Author(s):  
Adam A. C. Burns ◽  
Alexander Gutfraind

AbstractBackgroundNon-pharmaceutical interventions such as social distancing, school closures and travel restrictions are often implemented to control outbreaks of infectious diseases. For influenza in schools, the Center of Disease Control (CDC) recommends that febrile students remain isolated at home until they have been fever-free for at least one day and a related policy is recommended for SARS-CoV2 (COVID-19). Other authors proposed using a school week of four or fewer days of in-person instruction for all students to reduce transmission. However, there is limited evidence supporting the effectiveness of these interventions.MethodsWe introduced a mathematical model of school outbreaks that considers both intervention methods. Our model accounts for the school structure and schedule, as well as the time-progression of fever symptoms and viral shedding. The model was validated on outbreaks of seasonal and pandemic influenza and COVID-19 in schools. It was then used to estimate the outbreak curves and the proportion of the population infected (attack rate) under the proposed interventions.ResultsFor influenza, the CDC-recommended one day of post-fever isolation can reduce the attack rate by a median (interquartile range) of 29 (13 - 59)%. With two days of post-fever isolation the attack rate could be reduced by 70 (55 - 85)%. Alternatively, shortening the school week to four and three days reduces the attack rate by 73 (64 - 88)% and 93 (91 - 97)%, respectively. For COVID-19, application of post-fever isolation policy was found to be less effective and reduced the attack rate by 10 (5 - 17)% for a two-day isolation policy and by 14 (5 - 26)% for 14 days. A four-day school week would reduce the median attack rate in a COVID-19 outbreak by 57 (52 - 64)%, while a three-day school week would reduce it by 81 (79 - 83)%. In both infections, shortening the school week significantly reduced the duration of outbreaks.ConclusionsShortening the school week could be an important tool for controlling influenza and COVID-19 in schools and similar settings. Additionally, the CDC-recommended post-fever isolation policy for influenza could be enhanced by requiring two days of isolation instead of one.


2017 ◽  
Vol 47 (1) ◽  
pp. 1-7

This section comprises JPS summaries and links to international, Arab, Israeli, and U.S. documents and source materials from the quarter spanning 16 May-15 November 2017. Fifty years of Israeli occupation was the focus of reports by the UN Office for the Coordination of Humanitarian Affairs (OCHA) and Oxfam that documented the ongoing human rights abuses in the occupied Palestinian territories. Other notable documents include Israeli NGO Gisha and UNSCO reports on the ten-year Gaza siege, Al Jazeera's interactive timeline of the Nakba, and an exchange of letters between the ACLU and U.S. senators on anti-BDS legislation.


Sign in / Sign up

Export Citation Format

Share Document