soc fractions
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 1)

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2563
Author(s):  
Yunke Qu ◽  
Jie Tang ◽  
Zihao Zhou ◽  
Ben Liu ◽  
Yucong Duan ◽  
...  

Soil samples from T (0~20 cm) and S (20~40 cm) layers of four saline–alkali rice fields (R5, R15, R20, and R35) with different reclamation years were selected to study the distribution of soil aggregates and the contents of readily oxidizable organic carbon (ROC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), potentially mineralizable carbon (PMC), and soil organic carbon (SOC). The effects of large macroaggregate (>2 mm, LMA), small macroaggregate (0.25 to 2 mm, SMA), and microaggregate (<0.25 mm, MA) particle size, soil layer, and soil physicochemical properties on SOC fractions were also analyzed. The results showed that the LMA size in saline–alkali paddy fields were easily decomposed and was unstable due to the influence of the external environment. With the increase in reclamation years, the proportion of LMA in the S layer decreased gradually. The ROC, DOC, MBC and TOC contents of aggregates in the T and S layers gradually increased with the increase in reclamation years, and SOC fractions contents of aggregates in different grain sizes were SMA > LMA > MA. An effective way to increase carbon sink and improve the ecological environment in western Jilin Province is to change the soil environment by planting rice in saline–alkali land.


2021 ◽  
Author(s):  
Xiaolu Sun ◽  
Michael G. Ryan ◽  
Osbert Jianxin Sun ◽  
Zuoxin Tang

Abstract Background: Because soil organic carbon (SOC) variation is a result of its physicochemical protection, fractionating SOC into different functional subpools according to its protection mechanism and studying the mechanism of different SOC fractions’ responses to environmental change will help guide the study of SOC dynamics. Therefore, we conducted an analysis of density-based SOC fractionation of 107 study sites from 35 literature sources to answer the following questions: (1) Will different fractionation methods yield different amounts in the three organic carbon pools: free organic carbon (FOC), occluded organic carbon (OOC) and mineral associated organic carbon (MOC)? (2) Does the distribution of these three SOC fractions differ with climate (mean annual temperature, MAT; mean annual precipitation, MAP), soil characteristics (e.g., soil layer, soil type, clay content) or vegetation type when controlling for any method differences?Results: Experimental method significantly affected OOC and MOC but not FOC results, and OOC separated by density and soil physical dispersion (density+disperse) was underestimated, thus a suitable SOC fractionation method should be carefully selected. SOC and MOC contents were negatively related to MAT; and highest SOC content appeared at moderate MAP, and when MAP increased or decreased, SOC decreased. SOC, FOC, and MOC were significantly affected by vegetation type; presumably due to anthropogenic disturbance or precipitation, plantations, grass and rainforest had the lower SOC contents and higher OOC and MOC percentages; and conifer, broadleaf, and mixed forests had similar FOC, OOC and MOC percentages, indicating less effect of tree species on SOC variation. The contents of both SOC and each fraction decreased in deeper sol layer; SOC, FOC and OOC contents were significantly affected by soil type; and SOC and MOC contents were negatively related to soil clay content, but the influences of soil characters on SOC and its fractions were less than experimental method and climate condition.Conclusion: Experimental methods for fractionation of SOC significantly affected fraction results. Climate, vegetation type and soil character also significantly influenced SOC and its factions, but the influences of soil characters on SOC and its fractions were not as strong as experimental method and climate condition.


2021 ◽  
Vol 14 (6) ◽  
pp. 3879-3898
Author(s):  
Lauric Cécillon ◽  
François Baudin ◽  
Claire Chenu ◽  
Bent T. Christensen ◽  
Uwe Franko ◽  
...  

Abstract. Partitioning soil organic carbon (SOC) into two kinetically different fractions that are stable or active on a century scale is key for an improved monitoring of soil health and for more accurate models of the carbon cycle. However, all existing SOC fractionation methods isolate SOC fractions that are mixtures of centennially stable and active SOC. If the stable SOC fraction cannot be isolated, it has specific chemical and thermal characteristics that are quickly (ca. 1 h per sample) measurable using Rock-Eval® thermal analysis. An alternative would thus be to (1) train a machine-learning model on the Rock-Eval® thermal analysis data for soil samples from long-term experiments for which the size of the centennially stable and active SOC fractions can be estimated and (2) apply this model to the Rock-Eval® data for unknown soils to partition SOC into its centennially stable and active fractions. Here, we significantly extend the validity range of a previously published machine-learning model (Cécillon et al., 2018) that is built upon this strategy. The second version of this model, which we propose to name PARTYSOC, uses six European long-term agricultural sites including a bare fallow treatment and one South American vegetation change (C4 to C3 plants) site as reference sites. The European version of the model (PARTYSOCv2.0EU) predicts the proportion of the centennially stable SOC fraction with a root mean square error of 0.15 (relative root mean square error of 0.27) at six independent validation sites. More specifically, our results show that PARTYSOCv2.0EU reliably partitions SOC kinetic fractions at its northwestern European validation sites on Cambisols and Luvisols, which are the two dominant soil groups in this region. We plan future developments of the PARTYSOC global model using additional reference soils developed under diverse pedoclimates and ecosystems to further expand its domain of application while reducing its prediction error.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiangqi Wu ◽  
Haiyan Wang ◽  
Guang Li ◽  
Jianghua Wu ◽  
Weiwei Ma

AbstractWet meadows provide opportunities to decrease carbon dioxide (CO2) and methane (CH4) released into the atmosphere by increasing the soil organic carbon (SOC) stored in wetland systems. Although wet meadows serve as the most important and stable C sinks, there has been very few investigations on the seasonal distributions of SOC fractions in high-altitude wet meadows. Here, we studied the effects of four vegetation degradation levels, non-degraded (ND), lightly degraded (LD), moderately degraded (MD), and heavily degraded (HD), on the measured vertical and seasonal changes of SOC and its different fractions. Among these vegetation degradation levels, 0–10 and 10–20 cm soil depths in ND plots had significantly higher SOC contents than the other degradation levels had throughout the year. This is attributed to the relatively greater inputs of aboveground plant litter and richer fine-root biomass in ND plots. Particulate organic carbon (POC) and light fraction organic carbon (LFOC) showed similar vertical and seasonal variations in autumn, reaching a minimum. Moreover, microbial biomass (MBC) and easily oxidizable organic carbon (EOC) contents were highest in summer and the smallest in winter, while dissolved organic carbon (DOC) content was highest in spring and lowest in summer, and were mainly concentrated in the 0–20 cm layer. Pearson correlation analysis indicated that soil properties and aboveground biomass were significantly related to different SOC fractions. The results indicate that vegetation degradation reduces the accumulation of total SOC and its different fractions, which may reduce carbon sink capacity and soil quality of alpine wet meadows, and increase atmospheric environmental pressure. In addition, vegetation biomass and soil characteristics play a key role in the formation and transformation of soil carbon. These results strengthen our understanding of soil C dynamics, specifically related to the different C fractions as affected by vegetation degradation levels and soil depth, in wet meadow systems.


2021 ◽  
Author(s):  
Lauric Cécillon ◽  
François Baudin ◽  
Claire Chenu ◽  
Bent T. Christensen ◽  
Uwe Franko ◽  
...  

Abstract. Partitioning soil organic carbon (SOC) into two kinetically different fractions that are centennially stable or active is key information for an improved monitoring of soil health and for a more accurate modelling of the carbon cycle. However, all existing SOC fractionation methods isolate SOC fractions that are mixtures of centennially stable and active SOC. If the stable SOC fraction cannot be isolated, it has specific chemical and thermal characteristics that are quickly (ca. 1 h per sample) measureable using Rock-Eval® thermal analysis. An alternative would thus be to (1) train a machine-learning model on the Rock-Eval® thermal analysis data of soil samples from long-term experiments where the size of the centennially stable and active SOC fractions can be estimated, and (2) apply this model on the Rock-Eval® data of unknown soils, to partition SOC into its centennially stable and active fractions. Here, we significantly extend the validity range of the machine-learning model published by Cécillon et al. [Biogeosciences, 15, 2835–2849, 2018, https://doi.org/10.5194/bg-15-2835-2018], and built upon this strategy. The second version of this statistical model, which we propose to name PARTYSOC, uses six European long-term agricultural sites including a bare fallow treatment and one South American vegetation change (C4 to C3 plants) site as reference sites. The European version of the model (PARTYSOCv2.0EU) predicts the proportion of the centennially stable SOC fraction with a conservative root-mean-square error of 0.15 (relative root-mean-square error of 0.27) in a wide range of agricultural topsoils from Northwestern Europe. We plan future expansions of the PARTYSOC global model using additional reference soils developed under diverse pedoclimates and ecosystems, and we already recommend the application of PARTYSOCv2.0EU in European agricultural topsoils to provide accurate information on SOC kinetic pools partitioning that may improve the simulations of simple models of SOC dynamics.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 221
Author(s):  
Hui Yang ◽  
Yincai Xie ◽  
Tongbin Zhu ◽  
Mengxia Zhou

Understanding the changes in soil organic carbon (SOC) storage is important for accurately predicting ecosystem C sequestration and/or potential C losses, but the relevant information, especially for the evolvement of calcareous soil is limited in karst regions. Three calcareous soils with different evolvement intensities were sampled from an evergreen broadleaved forest in the subtropical region of southwest of China to investigate the changes in different SOC fractions and microbial communities. The results showed that: (1) The contents of SOC, dissolved organic carbon (DOC), mineral protected organic carbon (MOC), and recalcitrant organic carbon (ROC) significantly decreased with increasing evolvement intensity of calcareous soil, but pH and the chemical composition of SOC, including Alkyl C, O-alkyl C, Aromatic C, and Carbonyl C, did not significantly change, suggesting that various SOC fractions synergistically decrease with the evolvement of calcareous soil. (2) The evolvement of calcareous soil had a substantial negative effect on total phospholipid fatty acids (PLFA), bacteria (i.e., Gram positive bacteria and Gram negative bacteria), fungi, and actinomycetes, but did not affect the ratio of fungi to bacteria. This result supported the conclusion that various SOC fractions were synchronously loss with the evolvement of calcareous soil. (3) Results from the multivariate statistical analysis showed a significant correlation between SOC fractions (including SOC, DOC, MOC, and ROC) and soil base cations, mainly calcium (Ca), iron (Fe), and aluminum (Al). This strengthens the fact that SOC stability largely depends on the complex relationship between organic matter and mineral composition in soil. Taken together, the reduction of SOC during the evolvement of soil in the karst areas accords with some mechanisms of previous studies (e.g., microbial composition and soil geochemistry), and also has its own unique characteristics (e.g., the relative contribution of carbons to chemical shift regions of CPMAS 13C-NMR spectra and F:B ratio).


2021 ◽  
Vol 152 (2-3) ◽  
pp. 327-343
Author(s):  
Xiaowei Guo ◽  
Zhongkui Luo ◽  
Osbert Jianxin Sun

AbstractChanges in litter and nutrient inputs into soil could have significant consequences on forest carbon (C) dynamics via controls on the structure and microbial utilization of soil organic C (SOC). In this study, we assessed changes in physical fractions (250–2000 μm, 53–250 μm, and < 53 μm soil aggregates) and chemical fractions (labile, intermediate and recalcitrant pools) of SOC in the top 20 cm mineral soil layer and their influences on microbial substrate utilization after eight years of experiment in a mixed pine-oak forest. The litter treatments included: control (Lcon), litter removal (Lnil), fine woody litter addition (Lwoody), leaf litter addition (Lleaf) and a mix of leaf and fine woody litter (Lmix). Nitrogen (N) addition (application rates of 0, 5 and 10 g N m−2 year−1, respectively) was also applied. We found that complete removal of forest-floor litter (Lnil) significantly reduced the pool sizes of all SOC fractions in both the physical and chemical fractions compared with treatments that retained either leaf litter (Lleaf) or mixture of leaves and fine woody materials (Lmix). The type of litter was more important in affecting SOC fractions than the quantity of inputs; neither the level of N addition rate nor its interaction with litter treatment had significant effects on both physical and chemical SOC fractions. Microbial respiration differed significantly among the treatments of varying litter types. However, the effectiveness of microbial C utilization inferred by microbial C use efficiency and biomass-specific respiration was not affected by either the litter treatments or N addition. These results suggest that despite significant changes in SOC composition due to long-term treatments of forest-floor litter and N addition in this mixed pine-oak forest of temperate climate, microbial C utilization strategies remain unaffected.


2021 ◽  
Vol 67 (No. 1) ◽  
pp. 1-7
Author(s):  
Fang He ◽  
Lin-lin Shi ◽  
Jing-cheng Tian ◽  
Li-juan Mei

To evaluate the long-term effects of fertilisation on soil organic carbon (SOC) sequestration in rice-wheat cropping ecosystems, SOC dynamics, stocks and fractionation were determined. The treatments included no fertiliser, mineral N and P, mineral N, P and K, organic fertiliser (OF), OF plus NP and OF plus NPK. The results showed that the average carbon inputs that derived from crop stubble, root residues and organic fertilisers were between 1.47 and 4.33 t/ha/year over the past 34 years. The average SOC stocks measured in the samples collected in 2011–2013 ranged from 31.20 to 38.52 t/ha. The range of the SOC sequestration rate was 0.11–0.40 t/ha/year with a SOC sequestration efficiency of 6.3%. Overall, organic fertilisation significantly promoted C-input, SOC and the sequestration rate compared to mineral fertilisation. The "active pool" (very labile and labile fractions) and "passive pool" (less labile and recalcitrant fractions) accounted for about 71.0% and 29.0% of the SOC fractions, respectively. Significant positive relationships between C-inputs and SOC fractions indicated that SOC was not saturated in this typical rice-wheat cropping system, and fertilisation, especially organic amendment, is an effective SOC strategy sequestration.  


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


Sign in / Sign up

Export Citation Format

Share Document