scholarly journals Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review

Author(s):  
Jelena Musulin ◽  
Sandi Baressi Šegota ◽  
Daniel Štifanić ◽  
Ivan Lorencin ◽  
Nikola Anđelić ◽  
...  

COVID-19 is one of the greatest challenges humanity has faced recently, forcing a change in the daily lives of billions of people worldwide. Therefore, many efforts have been made by researchers across the globe in the attempt of determining the models of COVID-19 spread. The objectives of this review are to analyze some of the open-access datasets mostly used in research in the field of COVID-19 regression modeling as well as present current literature based on Artificial Intelligence (AI) methods for regression tasks, like disease spread. Moreover, we discuss the applicability of Machine Learning (ML) and Evolutionary Computing (EC) methods that have focused on regressing epidemiology curves of COVID-19, and provide an overview of the usefulness of existing models in specific areas. An electronic literature search of the various databases was conducted to develop a comprehensive review of the latest AI-based approaches for modeling the spread of COVID-19. Finally, a conclusion is drawn from the observation of reviewed papers that AI-based algorithms have a clear application in COVID-19 epidemiological spread modeling and may be a crucial tool in the combat against coming pandemics.

Author(s):  
Anil Babu Payedimarri ◽  
Diego Concina ◽  
Luigi Portinale ◽  
Massimo Canonico ◽  
Deborah Seys ◽  
...  

Artificial Intelligence (AI) and Machine Learning (ML) have expanded their utilization in different fields of medicine. During the SARS-CoV-2 outbreak, AI and ML were also applied for the evaluation and/or implementation of public health interventions aimed to flatten the epidemiological curve. This systematic review aims to evaluate the effectiveness of the use of AI and ML when applied to public health interventions to contain the spread of SARS-CoV-2. Our findings showed that quarantine should be the best strategy for containing COVID-19. Nationwide lockdown also showed positive impact, whereas social distancing should be considered to be effective only in combination with other interventions including the closure of schools and commercial activities and the limitation of public transportation. Our findings also showed that all the interventions should be initiated early in the pandemic and continued for a sustained period. Despite the study limitation, we concluded that AI and ML could be of help for policy makers to define the strategies for containing the COVID-19 pandemic.


2021 ◽  
Author(s):  
◽  
Hazel Darney

<p>With the rapid uptake of machine learning artificial intelligence in our daily lives, we are beginning to realise the risks involved in implementing this technology in high-stakes decision making. This risk is due to machine learning decisions being based in human-curated datasets, meaning these decisions are not bias-free. Machine learning datasets put women at a disadvantage due to factors including (but not limited to) historical exclusion of women in data collection, research, and design; as well as the low participation of women in artificial intelligence fields. These factors mean that applications of machine learning may fail to treat the needs and experiences of women as equal to those of men.    Research into understanding gender biases in machine learning frequently occurs within the computer science field. This has frequently resulted in research where bias is inconsistently defined, and proposed techniques do not engage with relevant literature outside of the artificial intelligence field. This research proposes a novel, interdisciplinary approach to the measurement and validation of gender biases in machine learning. This approach translates methods of human-based gender bias measurement in psychology, forming a gender bias questionnaire for use on a machine rather than a human.   The final output system of this research as a proof of concept demonstrates the potential for a new approach to gender bias investigation. This system takes advantage of the qualitative nature of language to provide a new way of understanding gender data biases by outputting both quantitative and qualitative results. These results can then be meaningfully translated into their real-world implications.</p>


2021 ◽  
Author(s):  
◽  
Hazel Darney

<p>With the rapid uptake of machine learning artificial intelligence in our daily lives, we are beginning to realise the risks involved in implementing this technology in high-stakes decision making. This risk is due to machine learning decisions being based in human-curated datasets, meaning these decisions are not bias-free. Machine learning datasets put women at a disadvantage due to factors including (but not limited to) historical exclusion of women in data collection, research, and design; as well as the low participation of women in artificial intelligence fields. These factors mean that applications of machine learning may fail to treat the needs and experiences of women as equal to those of men.    Research into understanding gender biases in machine learning frequently occurs within the computer science field. This has frequently resulted in research where bias is inconsistently defined, and proposed techniques do not engage with relevant literature outside of the artificial intelligence field. This research proposes a novel, interdisciplinary approach to the measurement and validation of gender biases in machine learning. This approach translates methods of human-based gender bias measurement in psychology, forming a gender bias questionnaire for use on a machine rather than a human.   The final output system of this research as a proof of concept demonstrates the potential for a new approach to gender bias investigation. This system takes advantage of the qualitative nature of language to provide a new way of understanding gender data biases by outputting both quantitative and qualitative results. These results can then be meaningfully translated into their real-world implications.</p>


2021 ◽  
Vol 89 ◽  
pp. 177-198
Author(s):  
Quinlan D. Buchlak ◽  
Nazanin Esmaili ◽  
Jean-Christophe Leveque ◽  
Christine Bennett ◽  
Farrokh Farrokhi ◽  
...  

2020 ◽  
Vol 130 ◽  
pp. 109899 ◽  
Author(s):  
Ioannis Antonopoulos ◽  
Valentin Robu ◽  
Benoit Couraud ◽  
Desen Kirli ◽  
Sonam Norbu ◽  
...  

2019 ◽  
Vol 12 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Nick M Murray ◽  
Mathias Unberath ◽  
Gregory D Hager ◽  
Ferdinand K Hui

Background and purposeAcute stroke caused by large vessel occlusions (LVOs) requires emergent detection and treatment by endovascular thrombectomy. However, radiologic LVO detection and treatment is subject to variable delays and human expertise, resulting in morbidity. Imaging software using artificial intelligence (AI) and machine learning (ML), a branch of AI, may improve rapid frontline detection of LVO strokes. This report is a systematic review of AI in acute LVO stroke identification and triage, and characterizes LVO detection software.MethodsA systematic review of acute stroke diagnostic-focused AI studies from January 2014 to February 2019 in PubMed, Medline, and Embase using terms: ‘artificial intelligence’ or ‘machine learning or deep learning’ and ‘ischemic stroke’ or ‘large vessel occlusion’ was performed.ResultsVariations of AI, including ML methods of random forest learning (RFL) and convolutional neural networks (CNNs), are used to detect LVO strokes. Twenty studies were identified that use ML. Alberta Stroke Program Early CT Score (ASPECTS) commonly used RFL, while LVO detection typically used CNNs. Image feature detection had greater sensitivity with CNN than with RFL, 85% versus 68%. However, AI algorithm performance metrics use different standards, precluding ideal objective comparison. Four current software platforms incorporate ML: Brainomix (greatest validation of AI for ASPECTS, uses CNNs to automatically detect LVOs), General Electric, iSchemaView (largest number of perfusion study validations for thrombectomy), and Viz.ai (uses CNNs to automatically detect LVOs, then automatically activates emergency stroke treatment systems).ConclusionsAI may improve LVO stroke detection and rapid triage necessary for expedited treatment. Standardization of performance assessment is needed in future studies.


2021 ◽  
Author(s):  
Bongs Lainjo

Abstract Background: Information technology has continued to shape contemporary thematic trends. Advances in communication have impacted almost all themes ranging from education, engineering, healthcare, and many other aspects of our daily lives. Method: This paper attempts to review the different dynamics of the thematic IoT platforms. A select number of themes are extensively analyzed with emphasis on data mining (DM), personalized healthcare (PHC), and thematic trends of a select number of subjectively identified IoT-related publications over three years. In this paper, the number of IoT-related-publications is used as a proxy representing the number of apps. DM remains the trailblazer, serving as a theme with crosscutting qualities that drive artificial intelligence (AI), machine learning (ML), and data transformation. A case study in PHC illustrates the importance, complexity, productivity optimization, and nuances contributing to a successful IoT platform. Among the initial 99 IoT themes, 18 are extensively analyzed using the number of IoT publications to demonstrate a combination of different thematic dynamics, including subtleties that influence escalating IoT publication themes. Results: Based on findings amongst the 99 themes, the annual median IoT-related publications for all the themes over the four years were increasingly 5510, 8930, 11700, and 14800 for 2016, 2017, 2018, and 2019 respectively; indicating an upbeat prognosis of IoT dynamics. Conclusion: The vulnerabilities that come with the successful implementation of IoT systems are highlighted including the successes currently achieved by institutions promoting the benefits of IoT-related systems like the case study. Security continues to be an issue of significant importance.


2021 ◽  
Vol 4 ◽  
Author(s):  
Lindsay Wells ◽  
Tomasz Bednarz

Research into Explainable Artificial Intelligence (XAI) has been increasing in recent years as a response to the need for increased transparency and trust in AI. This is particularly important as AI is used in sensitive domains with societal, ethical, and safety implications. Work in XAI has primarily focused on Machine Learning (ML) for classification, decision, or action, with detailed systematic reviews already undertaken. This review looks to explore current approaches and limitations for XAI in the area of Reinforcement Learning (RL). From 520 search results, 25 studies (including 5 snowball sampled) are reviewed, highlighting visualization, query-based explanations, policy summarization, human-in-the-loop collaboration, and verification as trends in this area. Limitations in the studies are presented, particularly a lack of user studies, and the prevalence of toy-examples and difficulties providing understandable explanations. Areas for future study are identified, including immersive visualization, and symbolic representation.


Sign in / Sign up

Export Citation Format

Share Document