INDUSTRY 4.0: A Comprehensive Review of Artificial Intelligence, Machine Learning, Big Data and IoT in Psychiatric Health Care

Author(s):  
Anoushka Panwar ◽  
Neha Malhotra ◽  
Dheeraj Malhotra
2019 ◽  
Vol 11 (2) ◽  
pp. 125-35
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Giant transformations are going on currently in health care, and the greatest force behind this phenomenon is data.CONTENT: Big data has arrived into medicine field, lead to potential enhancement in accountability, quality, efficiency, and innovation. Most updated, artificial intelligence (AI) and machine-learning (ML) techniques rapidly developed, bring forth the big data analysis into more useful applications, from resource allocation to complex disease diagnosis. To realize this, a very large set of health-care data is needed for algorithms training and evaluation, including patients’ treatment data, patients respond to treatment, and personal patient information, such as genetic data, family history, health behavior, and vital signs.SUMMARY: Precision Health involving preventive, predictive, personalized and precise. The arrival of AI and ML will enhance and facilitates the improvement of this relationship through better accuracy, productivity, and workflow, thus develop a health system that will go beyond just curing disease, but further into wellness that preventing disease before it strikes, thus the patient–doctor bond is expected to be reformed and not be eroded.KEYWORDS: artificial intelligence, machine learning, deep learning, electronic health records, big data


2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Oliwia Koteluk ◽  
Adrian Wartecki ◽  
Sylwia Mazurek ◽  
Iga Kołodziejczak ◽  
Andrzej Mackiewicz

With an increased number of medical data generated every day, there is a strong need for reliable, automated evaluation tools. With high hopes and expectations, machine learning has the potential to revolutionize many fields of medicine, helping to make faster and more correct decisions and improving current standards of treatment. Today, machines can analyze, learn, communicate, and understand processed data and are used in health care increasingly. This review explains different models and the general process of machine learning and training the algorithms. Furthermore, it summarizes the most useful machine learning applications and tools in different branches of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized decision making, and many others). The review also addresses the futuristic prospects and threats of applying artificial intelligence as an advanced, automated medicine tool.


Proceedings ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 24
Author(s):  
Eduard Alexandru Stoica ◽  
Daria Maria Sitea

Nowadays society is profoundly changed by technology, velocity and productivity. While individuals are not yet prepared for holographic connection with banks or financial institutions, other innovative technologies have been adopted. Lately, a new world has been launched, personalized and adapted to reality. It has emerged and started to govern almost all daily activities due to the five key elements that are foundations of the technology: machine to machine (M2M), internet of things (IoT), big data, machine learning and artificial intelligence (AI). Competitive innovations are now on the market, helping with the connection between investors and borrowers—notably crowdfunding and peer-to-peer lending. Blockchain technology is now enjoying great popularity. Thus, a great part of the focus of this research paper is on Elrond. The outcomes highlight the relevance of technology in digital finance.


2021 ◽  
pp. 002073142110174
Author(s):  
Md Mijanur Rahman ◽  
Fatema Khatun ◽  
Ashik Uzzaman ◽  
Sadia Islam Sami ◽  
Md Al-Amin Bhuiyan ◽  
...  

The novel coronavirus disease (COVID-19) has spread over 219 countries of the globe as a pandemic, creating alarming impacts on health care, socioeconomic environments, and international relationships. The principal objective of the study is to provide the current technological aspects of artificial intelligence (AI) and other relevant technologies and their implications for confronting COVID-19 and preventing the pandemic’s dreadful effects. This article presents AI approaches that have significant contributions in the fields of health care, then highlights and categorizes their applications in confronting COVID-19, such as detection and diagnosis, data analysis and treatment procedures, research and drug development, social control and services, and the prediction of outbreaks. The study addresses the link between the technologies and the epidemics as well as the potential impacts of technology in health care with the introduction of machine learning and natural language processing tools. It is expected that this comprehensive study will support researchers in modeling health care systems and drive further studies in advanced technologies. Finally, we propose future directions in research and conclude that persuasive AI strategies, probabilistic models, and supervised learning are required to tackle future pandemic challenges.


Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


Author(s):  
Snigdha Sen ◽  
Sonali Agarwal ◽  
Pavan Chakraborty ◽  
Krishna Pratap Singh

2021 ◽  
Author(s):  
Richard Büssow ◽  
Bruno Hain ◽  
Ismael Al Nuaimi

Abstract Objective and Scope Analysis of operational plant data needs experts in order to interpret detected anomalies which are defined as unusual operation points. The next step on the digital transformation journey is to provide actionable insights into the data. Prescriptive Maintenance defines in advance which kind of detailed maintenance and spare parts will be required. This paper details requirements to improve these predictions for rotating equipment and show potential to integrate the outcome into an operational workflow. Methods, Procedures, Process First principle or physics-based modelling provides additional insights into the data, since the results are directly interpretable. However, such approaches are typically assumed to be expensive to build and not scalable. Identification of and focus on the relevant equipment to be modeled in a hybrid model using a combination of first principle physics and machine learning is a successful strategy. The model is trained using a machine learning approach with historic or current real plant data, to predict conditions which have not occurred before. The better the Artificial Intelligence is trained, the better the prediction will be. Results, Observations, Conclusions The general aim when operating a plant is the actual usage of operational data for process and maintenance optimization by advanced analytics. Typically a data-driven central oversight function supports operations and maintenance staff. A major lesson-learned is that the results of a rather simple statistical approach to detect anomalies fall behind the expectations and are too labor intensive. It is a widely spread misinterpretation that being able to deal with big data is sufficient to come up with good prediction quality for Prescriptive Maintenance. What big data companies are normally missing is domain knowledge, especially on plant critical rotating equipment. Without having domain knowledge the relevant input into the model will have shortcomings and hence the same will apply to its predictions. This paper gives an example of a refinery where the described hybrid model has been used. Novel and Additive Information First principle models are typically expensive to build and not scalable. This hybrid model approach, combining first principle physics based models with artificial intelligence and integration into an operational workflow shows a new way forward.


Sign in / Sign up

Export Citation Format

Share Document