scholarly journals Inhibition of Quinolone- and Multi-Drug-Resistant Clostridioides Difficile Strains by Multi Strain Synbiotics—An Option for Diarrhea Management in Nursing Facilities

Author(s):  
Henning Sommermeyer ◽  
Hanna M. Pituch ◽  
Dorota Wultanska ◽  
Paulina Wojtyla-Buciora ◽  
Jacek Piatek ◽  
...  

Diarrhea is a common problem in nursing homes. A survey among nursing facilities in Poland was used to characterize diarrhea outbreaks, the burden caused for residents and caregivers and the employed measures. Survey results confirmed that diarrhea is a common problem in nursing homes and in most cases affects groups of residents. The related burden is high or very high for 27% of residents and 40% of caregivers. In 80% of nursing facilities pro or synbiotics are part of the measures used to manage diarrhea. Administration of these kinds of products has been suggested for the management of diarrhea, especially in cases caused by Clostridioides (C.) difficile. C. difficile is one of many potential causes for diarrhea, but is of particular concern for nursing homes because it is responsible for a large proportion of diarrhea outbreaks and is often caused by multi-drug resistant strains. In vitro inhibition of a quinolone-resistant and a multi-drug resistant C. difficile strain was used to evaluate the growth inhibitory effects of commonly used products containing probiotic microorganisms. Growth of both strains was best inhibited by multi-strain synbiotic preparations. These findings suggest that multi-strain synbiotics can be considered as an interventional option for diarrhea caused by C. difficile.

2021 ◽  
Vol 12 (1) ◽  
pp. 16-26
Author(s):  
Kimberly To ◽  
Ruoqiong Cao ◽  
Aram Yegiazaryan ◽  
James Owens ◽  
Kayvan Sasaninia ◽  
...  

Abstract Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains a devastating infectious disease in the world. There has been a daunting increase in the incidence of Type 2 Diabetes Mellitus (T2DM) worldwide. T2DM patients are three times more vulnerable to M. tb infection compared to healthy individuals. TB-T2DM coincidence is a challenge for global health control. Despite some progress in the research, M. tb still has unexplored characteristics in successfully evading host defenses. The lengthy duration of treatment, the emergence of multi-drug-resistant strains and extensive-drug-resistant strains of M. tb have made TB treatment very challenging. Previously, we have tested the antimycobacterial effects of everolimus within in vitro granulomas generated from immune cells derived from peripheral blood of healthy subjects. However, the effectiveness of everolimus treatment against mycobacterial infection in individuals with T2DM is unknown. Furthermore, the effectiveness of the combination of in vivo glutathione (GSH) supplementation in individuals with T2DM along with in vitro treatment of isolated immune cells with everolimus against mycobacterial infection has never been tested. Therefore, we postulated that liposomal glutathione (L-GSH) and everolimus would offer great hope for developing adjunctive therapy for mycobacterial infection. L-GSH or placebo was administered to T2DM individuals orally for three months. Study subjects’ blood was drawn pre- and post-L-GSH/or placebo supplementation, where Peripheral Blood Mononuclear Cells (PBMCs) were isolated from whole blood to conduct in vitro studies with everolimus. We found that in vitro treatment with everolimus, an mTOR (membrane target of rapamycin) inhibitor, significantly reduced intracellular M. bovis BCG infection alone and in conjunction with L-GSH supplementation. Furthermore, we found L-GSH supplementation coupled with in vitro everolimus treatment produced a greater effect in inhibiting the growth of intracellular Mycobacterium bovis BCG, than with the everolimus treatment alone. We also demonstrated the functions of L-GSH along with in vitro everolimus treatment in modulating the levels of cytokines such as IFN-γ, TNF-α, and IL-2 and IL-6, in favor of improving control of the mycobacterial infection. In summary, in vitro everolimus-treatment alone and in combination with oral L-GSH supplementation for three months in individuals with T2DM, was able to increase the levels of T-helper type 1 (Th1) cytokines IFN-γ, TNF-α, and IL-2 as well as enhance the abilities of granulomas from individuals with T2DM to improve control of a mycobacterial infection.


2004 ◽  
Vol 57 (6) ◽  
pp. 400-402 ◽  
Author(s):  
KAZUHIKO OTOGURO ◽  
AKI ISHIYAMA ◽  
MIYUKI KOBAYASHI ◽  
HITOMI SEKIGUCHI ◽  
TAKASHI IZUHARA ◽  
...  

2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Manoon Leechawengwongs ◽  
Therdsak Prammananan ◽  
Sarinya Jaitrong ◽  
Pamaree Billamas ◽  
Nampueng Makhao ◽  
...  

ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


2010 ◽  
Vol 35 (2) ◽  
pp. 208-209 ◽  
Author(s):  
Yoonkyung Park ◽  
Seong-Cheol Park ◽  
Jin-Young Kim ◽  
Jeong Ok Park ◽  
Chang Ho Seo ◽  
...  

2012 ◽  
Vol 56 (7) ◽  
pp. 3475-3480 ◽  
Author(s):  
Sovitj Pou ◽  
Rolf W. Winter ◽  
Aaron Nilsen ◽  
Jane Xu Kelly ◽  
Yuexin Li ◽  
...  

ABSTRACTSontochin was the original chloroquine replacement drug, arising from research by Hans Andersag 2 years after chloroquine (known as “resochin” at the time) had been shelved due to the mistaken perception that it was too toxic for human use. We were surprised to find that sontochin, i.e., 3-methyl-chloroquine, retains significant activity against chloroquine-resistant strains ofPlasmodium falciparum in vitro. We prepared derivatives of sontochin, “pharmachins,” with alkyl or aryl substituents at the 3 position and with alterations to the 4-position side chain to enhance activity against drug-resistant strains. Modified with an aryl substituent in the 3 position of the 7-chloro-quinoline ring, Pharmachin 203 (PH-203) exhibits low-nanomolar 50% inhibitory concentrations (IC50s) against drug-sensitive and multidrug-resistant strains andin vivoefficacy against patent infections ofPlasmodium yoeliiin mice that is superior to chloroquine. Our findings suggest that novel 3-position aryl pharmachin derivatives have the potential for use in treating drug resistant malaria.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Yoshio Nakatani ◽  
Helen K. Opel-Reading ◽  
Matthias Merker ◽  
Diana Machado ◽  
Sönke Andres ◽  
...  

ABSTRACT A screening of more than 1,500 drug-resistant strains of Mycobacterium tuberculosis revealed evolutionary patterns characteristic of positive selection for three alanine racemase (Alr) mutations. We investigated these mutations using molecular modeling, in vitro MIC testing, as well as direct measurements of enzymatic activity, which demonstrated that these mutations likely confer resistance to d-cycloserine.


Fitoterapia ◽  
2011 ◽  
Vol 82 (5) ◽  
pp. 757-761 ◽  
Author(s):  
Divya Lakshmanan ◽  
Jim Werngren ◽  
Leny Jose ◽  
K.P. Suja ◽  
Mangalam S. Nair ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105676-105689 ◽  
Author(s):  
Srinivasarao Kondaparla ◽  
Awakash Soni ◽  
Ashan Manhas ◽  
Kumkum Srivastava ◽  
Sunil K. Puri ◽  
...  

In the present study we have synthesized a new class of 4-aminoquinoline derivatives and bioevaluated them for antimalarial activity against theP. falciparum in vitro(3D7 & K1) andP. yoelii in vivo(N-67 strain).


Sign in / Sign up

Export Citation Format

Share Document