scholarly journals Adsorptive Removal of Arsenic and Lead by Stone Powder/Chitosan/Maghemite Composite Beads

Author(s):  
Hun Pak ◽  
Jesse Phiri ◽  
Junhyung We ◽  
Kyungho Jung ◽  
Sanghwa Oh

Arsenic (As) and lead (Pb) contamination in groundwater is a serious problem in countries that use groundwater as drinking water. In this study, composite beads, called SCM beads, synthesized using stone powder (SP), chitosan (Ch), and maghemite (Mag) with different weight ratios (1/1/0.1, 1/1/0.3, and 1/1/0.5 for SP/Ch/Mag) were prepared, characterized and used as adsorbents for the removal of As and Pb from artificially contaminated water samples. Adsorption isotherm experiments of As and Pb onto the beads were conducted and single-solute adsorption isotherm models such as the Langmuir, Freundlich, Dubinin–Radushkevich (DR), and dual mode (DM) models were fitted to the experimental data to analyze the adsorption characteristics. The maximum adsorption capacities of the SCM beads were 75.7 and 232.8 mmol/kg for As and Pb, respectively, which were 40 and 5.6 times higher than that of SP according to the Langmuir model analyses. However, the DM model had the highest determinant coefficient (R2) values for both As and Pb adsorption, indicating that the beads had heterogenous adsorption sites with different adsorption affinities. These magnetic beads could be utilized to treat contaminated groundwater.

2021 ◽  
pp. 1404-1414
Author(s):  
Asep Bayu Dani Nandiyanto ◽  
Siti Nur Hofifah ◽  
Hilma Tahsilul Inayah ◽  
Silmi Ridwan Putri ◽  
Siti Saffanah Apriliani ◽  
...  

This study aims to evaluate the adsorption isotherm of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds for adsorbing curcumin (as a model of dye). The results were derived and compared using the kinetics approach based on several standard adsorption isotherm models, namely the Langmuir, Temkin, Freundlich, and Dubinin-Radushkevich models. The second aim is to evaluate the effects of carbon particle size (from 100 to 1000 mm) on the adsorption characteristics. The experimental results showed that the adsorption on the surface of carbon microparticles occurred in monolayer with a physical phenomenon. This is because the active areas are located only on the outer surface of carbon and no surface structure in the carbon is available. This is confirmed by the fact that the produced carbon has less porosity and the pores themselves are mostly produced from the release of inorganic contents during carbon synthesis, while the amount of inorganic content is very less. The confirmation of the adsorption profile was also achieved by testing various sizes of carbon microparticles. Smaller particles have direct impacts on the improvement of adsorption capacity, which is due to the existence of a larger surface area, a larger number of adsorption sites, and additional cooperative adsorption, i.e. adsorbate-adsorbate interaction. Understanding the adsorption phenomena occurring on carbon particles is useful for further developments and applications, such as those of catalysts and adsorbents, especially concerning the production of carbon materials from organic waste.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 32 ◽  
Author(s):  
Changgil Son ◽  
Wonyeol An ◽  
Geonhee Lee ◽  
Inho Jeong ◽  
Yong-Gu Lee ◽  
...  

This study has evaluated the removal efficiencies of phosphate ions (PO43−) using pristine (TB) and chemical-activated tangerine peel biochars. The adsorption kinetics and isotherm presented that the enhanced physicochemical properties of TB surface through the chemical activation with CaCl2 (CTB) and FeCl3 (FTB) were helpful in the adsorption capacities of PO43− (equilibrium adsorption capacity: FTB (1.655 mg g−1) > CTB (0.354 mg g−1) > TB (0.104 mg g−1)). The adsorption kinetics results revealed that PO43− removal by TB, CTB, and FTB was well fitted with the pseudo-second-order model (R2 = 0.999) than the pseudo-first-order model (R2 ≥ 0.929). The adsorption isotherm models showed that the Freundlich equation was suitable for PO43− removal by TB (R2 = 0.975) and CTB (R2 = 0.955). In contrast, the Langmuir equation was proper for PO43− removal by FTB (R2 = 0.987). The PO43− removal efficiency of CTB and FTB decreased with the ionic strength increased due to the compression of the electrical double layer on the CTB and FTB surfaces. Besides, the PO43− adsorptions by TB, CTB, and FTB were spontaneous endothermic reactions. These findings demonstrated FTB was the most promising method for removing PO43− in waters.


2017 ◽  
Vol 23 (3) ◽  
pp. 399-409 ◽  
Author(s):  
Muhammad Din ◽  
Kiran Ijaz ◽  
Khalida Naseem

In the present work, Saccharum bengalense (SB) was treated with sulfuric acid to enhance its efficiency. Methyl violet (MV), a cationic dye, was removed from aqueous medium using acid modified S. bengalense (A-SB). Different parameters like adsorbent dosage, stirring speed, temperature, contact time and effect of initial concentration of dye on rate of adsorption of dye from aqueous medium was studied. Experimental data obtained from adsorption of MV was analyzed by applying pseudo first order, pseudo second order and intra-particle diffusion models and it was found that the data best follows the pseudosecond order kinetics. Thermodynamic parameters indicate that adsorption reaction was spontaneous, feasible and endothermic in nature. Different adsorption isotherm models, like Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin, were used to study the mechanism of adsorption process and experimental data was well fitted by the Langmuir adsorption isotherm.


Sign in / Sign up

Export Citation Format

Share Document