scholarly journals Assessment of Personal Relaxation in Indoor-Air Environments: Study in Real Full-Scale Laboratory Houses

Author(s):  
Yoshitake Nakayama ◽  
Norimichi Suzuki ◽  
Hiroko Nakaoka ◽  
Kayo Tsumura ◽  
Kohki Takaguchi ◽  
...  

The relationship between chemical concentrations in indoor air and the human sense of comfort and relaxation have been reported. We investigated the effect of the sum of volatile organic compounds (ΣVOCs; sum of 79 VOCs) on the level of relaxation in two laboratory houses with almost identical interior and exterior appearances. The electroencephalogram (EEG) was monitored to evaluate the degree of personal relaxation objectively. The experiments were conducted in laboratory houses (LH) A and B with lower and higher levels of ΣVOCs, respectively. A total of 168 healthy volunteers participated, who each performed the task for 20 min, followed by a 10-min break, and EEG was measured during the break. Simultaneously as subjective evaluations, the participants were asked to fill a questionnaire regarding the intensity of odor and preference for the air quality in each LH. The subjective evaluation showed a significant association between ΣVOCs and participants’ relaxation (OR: 2.86, 95%CI: 1.24–6.61), and the objective evaluation indicated that the participants were more relaxed in the LH with lower levels of ΣVOCs than that with higher levels (OR: 3.03, 95%CI: 1.23–7.50). Therefore, the reduction of ΣVOCs and odors in indoor air would have an effect, which is the promotion of relaxation.

1989 ◽  
Vol 15 (1-6) ◽  
pp. 419-425 ◽  
Author(s):  
Jan Kliest ◽  
Tilly Fast ◽  
Jan S.M. Boley ◽  
Henk van de Wiel ◽  
Henk Bloemen

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 806
Author(s):  
Ozge Cemiloglu Ulker ◽  
Onur Ulker ◽  
Salim Hiziroglu

Volatile organic compounds (VOCs) are the main source influencing the overall air quality of an environment. It is a well-known fact that coated furniture units, in the form of paints and varnishes, emit VOCs, reducing the air quality and resulting in significant health problems. Exposure time to such compounds is also an important parameter regarding their possible health effects. Such issues also have a greater influence when the exposure period is extended. The main objective of this study was to review some of the important factors for the emission of VOCs from coated furniture, from the perspective of material characteristics, as well as health concerns. Some methods for controlling VOC emissions to improve indoor air quality, from the point of view recent regulations and suggestions, are also presented in this work.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1570
Author(s):  
Charles Spence

This narrative review examines the complex relationship that exists between the presence of specific configurations of volatile organic compounds (VOCs) in food and drink products and multisensory flavour perception. Advances in gas chromatography technology and mass spectrometry data analysis mean that it is easier than ever before to identify the unique chemical profile of a particular food or beverage item. Importantly, however, there is simply no one-to-one mapping between the presence of specific VOCs and the flavours that are perceived by the consumer. While the profile of VOCs in a particular product undoubtedly does tightly constrain the space of possible flavour experiences that a taster is likely to have, the gustatory and trigeminal components (i.e., sapid elements) in foods and beverages can also play a significant role in determining the actual flavour experience. Genetic differences add further variation to the range of multisensory flavour experiences that may be elicited by a given configuration of VOCs, while an individual’s prior tasting history has been shown to determine congruency relations (between olfaction and gustation) that, in turn, modulate the degree of oral referral, and ultimately flavour pleasantness, in the case of familiar foods and beverages.


Indoor Air ◽  
1994 ◽  
Vol 4 (2) ◽  
pp. 123-134 ◽  
Author(s):  
S. K. Brown ◽  
M. R. Sim ◽  
M. J. Abramson ◽  
C. N. Gray

2022 ◽  
Vol 7 ◽  
Author(s):  
Nahla Al Qassimi ◽  
Chuloh Jung

Due to hot desert weather, residents of the United Arab Emirates (UAE) spend 90% of their time indoors, and the interior environment of the newly built apartments with inappropriate material and ventilation is causing sick building syndrome (SBS), faster than in any other country. NASA studies on indoor air pollutants indicate that the usage of 15–18 air-purifying plants in 18–24 cm diameter containers can clean the air in an average 167.2 m2 house (approximately one plant per 9.2 m2). This study investigates the effect of three different types of air-purifying plants, Pachira aquatica, Ficus benjamina, and Aglaonema commutatum, in reducing volatile organic compounds (VOCs) and formaldehyde (CH2O) in hot desert climate. An experiment is performed in which the CH2O and VOCs concentrations are measured in two laboratory spaces (Room 1 and Room 2). Different volumes (5 and 10% of the laboratory volume) of target plants are installed in Room 1, whereas Room 2 is measured under the same conditions without plants for comparison. The results show that the greater the planting volume (10%), the greater is the reduction effect of each VOCs. In summer in hot desert climate, the initial concentration (800 µg/cm3) of CH2O and VOCs is higher, and the reduction amount is higher (534.5 µg/cm3) as well. The reduction amount of CH2O and toluene (C7H8) is particularly high. In the case of C7H8, the reduction amount (45.9 µg/cm3) is higher in summer with Aglaonema commutatum and Ficus benjamina. It is statistically proven that Ficus benjamina is most effective in reducing CH2O and C7H8 in an indoor space in hot desert climate. The findings of this study can serve as basic data for further improving the indoor air quality using only air-purifying plants in hot desert climate of the United Arab Emirates.


Sign in / Sign up

Export Citation Format

Share Document