Impact of LULC Changes on LST in Rajshahi District of Bangladesh: A Remote Sensing Approach

2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.

2021 ◽  
Vol 2 (1) ◽  
pp. 23-35
Author(s):  
Abdelouhed Farah ◽  
Ahmed Algouti ◽  
Abdellah Algouti ◽  
Mohammed Ifkirne ◽  
Abdellatif Rafik

In recent decades, the Bouregreg Chaouia region has been subject to urban growth and a reduction in agricultural land in this region, which has changed its environmental variables and made it vulnerable to climate change. This work raises the spatiotemporal monitoring of land use and certain environmental parameters (vegetation cover, albedo, surface temperature from 1987 to 2015 by exploring intelligent spatial data in the region. The remote sensing products were computed from Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 Oli/TIRS images obtained during the dry seasons 1987, 2000 and 2015. The results showed a reduction in NDVI vegetation index (∼0.86 in 1987 to ∼0. 56 in 2000 to ∼ 0.54 in 2015) and with an increase in surface albedo (0.51 in 1987 to 0.52 in 2000 to 0. 69 in 2015), temperature (∼67°C in 1987 to 54°C in 2000 to 40°C in 2015) and to understand the impact of urbanization on the variation of environmental parameters, the evolution of the built-up area has been followed as a determining factor. However, it recorded 3.27% surface area in 1987 to 7.45% in 2000 to 28.18% in 2015. Indeed, the contribution of new technologies (GIS and remote sensing) is essential for better management and monitoring of the impact of urban expansion on the state of the environment. The results obtained remain so promising and highlight the contribution and feasibility of intelligent spatial data to assess the evolution of the urban environment on a large scale.


2020 ◽  
Author(s):  
Mikias Biazen Molla

Abstract This investigation was conducted for the estimation of the temporal land surface temperature value using thermal remote sensing of Landsat-8 (OLI) Data in Hawassa City Administration, Ethiopia. Satellite datasets of Landsat-7 (ETM+) for 22nd March 2002 and Landsat-8 (OLI) of 22nd March 2019 were taken for this study. Different algorisms were used to estimate the Normalized Difference Vegetation Index threshold from the Red and Near-Infrared band and the ground earth's surface emissivity esteem is legitimately recovered from the thermal infrared by coordinating with the outcome got from MODIS information. The land use land cover map of the city was prepared with better accuracy using the on-screen classification technique. The spatial distribution of surface temperature of the city range from 6.62°C to 22.54°C with a mean of 14.58°C and a standard deviation of 11.25 in the year of march 22nd 2002. The LST result derived from Landsat 8 for March 22nd, 2019, ranges from 11.97°C to 35.5°C with a mean of 23.735 °C and a standard deviation of 16.64. In both years the higher LST values correspond to built-up/settlement and bare/open lands of the city; whereas, lower LST values were observed in vegetation (trees/woodlot, shrubs, and grass forested) area. Urban expansion (built-up area roads, and another impervious surface), decline in vegetation levels due to deforestation and increasing population density. Increasing an evergreen tree and green space coverage, design and develop city parks and rehabilitate the existing degraded natural environments are among the recommended strategy to reduce the rate of LST.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


Author(s):  
A. Rajani, Dr. S.Varadarajan

Land Surface Temperature (LST) quantification is needed in various applications like temporal analysis, identification of global warming, land use or land cover, water management, soil moisture estimation and natural disasters. The objective of this study is estimation as well as validation of temperature data at 14 Automatic Weather Stations (AWS) in Chittoor District of Andhra Pradesh with LST extracted by using remote sensing as well as Geographic Information System (GIS). Satellite data considered for estimation purpose is LANDSAT 8. Sensor data used for assessment of LST are OLI (Operational Land Imager) and TIR (Thermal Infrared). Thermal band  contains spectral bands of 10 and 11 were considered for evaluating LST independently by using algorithm called Mono Window Algorithm (MWA). Land Surface Emissivity (LSE) is the vital parameter for calculating LST. The LSE estimation requires NDVI (Normalized Difference Vegetation Index) which is computed by using Band 4 (visible Red band) and band 5 (Near-Infra Red band) spectral radiance bands. Thermal band images having wavelength 11.2 µm and 12.5 µm of 30th May, 2015 and 21st October, 2015 were processed for the analysis of LST. Later on validation of estimated LST through in-suite temperature data obtained from 14 AWS stations in Chittoor district was carried out. The end results showed that, the LST retrieved by using proposed method achieved 5 per cent greater correlation coefficient (r) compared to LST retrieved by using existing method which is based on band 10.


2020 ◽  
Vol 12 (7) ◽  
pp. 1191 ◽  
Author(s):  
Md. Mustafizur Rahman ◽  
Ram Avtar ◽  
Ali P. Yunus ◽  
Jie Dou ◽  
Prakhar Misra ◽  
...  

Spatial urban growth and its impact on land surface temperature (LST) is a high priority environmental issue for urban policy. Although the impact of horizontal spatial growth of cities on LST is well studied, the impact of the vertical spatial distribution of buildings on LST is under-investigated. This is particularly true for cities in sub-tropical developing countries. In this study, TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-XDEM), Advanced Spaceborne Thermal Emission and Reflection (ASTER)-Global Digital Elevation Model (GDEM), and ALOS World 3D-30m (AW3D30) based Digital Surface Model (DSM) data were used to investigate the vertical growth of the Dhaka Metropolitan Area (DMA) in Bangladesh. Thermal Infrared (TIR) data (10.6-11.2µm) of Landsat-8 were used to investigate the seasonal variations in LST. Thereafter, the impact of horizontal and vertical spatial growth on LST was studied. The result showed that: (a) TanDEM-X DSM derived building height had a higher accuracy as compared to other existing DSM that reveals mean building height of the Dhaka city is approximately 10 m, (b) built-up areas were estimated to cover approximately 94%, 88%, and 44% in Dhaka South City Corporation (DSCC), Dhaka North City Corporation (DNCC), and Fringe areas, respectively, of DMA using a Support Vector Machine (SVM) classification method, (c) the built-up showed a strong relationship with LST (Kendall tau coefficient of 0.625 in summer and 0.483 in winter) in comparison to vertical growth (Kendall tau coefficient of 0.156 in the summer and 0.059 in the winter), and (d) the ‘low height-high density’ areas showed high LST in both seasons. This study suggests that vertical development is better than horizontal development for providing enough open spaces, green spaces, and preserving natural features. This study provides city planners with a better understating of sustainable urban planning and can promote the formulation of action plans for appropriate urban development policies.


2019 ◽  
Vol 10 (1) ◽  
pp. 70-77
Author(s):  
Muhammad Nasar -u-Minallah

Land surface temperature (LST) is an important parameter in global climate change and urban thermalenvironmental studies. The significance of land surface temperature is being acknowledged gradually and interest isincreasing in developing methodologies for the retrieval of LST from Satellite Remote Sensing (SRS) data. ThermalInfrared Sensor (TIRS) of Landsat-8 is the newest TIR sensor for the Landsat Data Continuity Mission (LDCM),offering two adjacent thermal infrared bands (10, 11), having significant beneficiary for the land surface temperatureinversion. The spectral radiance can be estimated through TIR bands 10 and 11 of Landsat-8 OLI_TIRS satellite image.In the present study, the radiative transfer equation-based method has been employed in estimating LST of Lahore andthe analysis demonstrated that estimated LST has the highest accuracy from the radiative transfer method through band10. Land Surface Emissivity (LSE) was derived with the aid of the NDVI’s threshold technique. The present studyresults show that as the built-up area increases and vegetation cover decreases in urban surface, they are linked toincrease in urban land surface temperature and conversely larger vegetation cover associated with lower urbantemperature. The output exposed that LST was high in built-up and barren land, whereas it was low in the area wherethere were more vegetation cover and water.


2021 ◽  
Vol 283 ◽  
pp. 01038
Author(s):  
Jing Sun ◽  
Jing He

The rapid urbanization process has recently led to significant land use and land cover (LULC) changes, thereby affecting the climate and the environment. The purpose of this study is to analyze the LULC changes in Hefei City, Anhui Province, and their relationship with land surface temperature (LST). To achieve this goal, multitemporal Landsat data were used to monitor the LULC and LST between 2005 and 2015. The study also used correlation analysis to analyze the relationship between LST, LULC, and other spectral indices (NDVI, NDBI, and NDWI). The results show that the built-up land has expanded significantly, transforming from 488.26 km2 in 2005 to 575.64 km2 in 2015. It further shows that the mean LST in Hefei city has increased from 284.0 K in 2005 to 285.86 K in 2015. The results also indicate that there is a positive correlation between LST and NDVI and NDBI, while there is a negative correlation between LST and NDWI. This means that urban expansion and reduced water bodies will lead to an increase in LST.


2020 ◽  
Vol 4 (2) ◽  
pp. 48-61
Author(s):  
Rian Nurtyawan ◽  
Ervan Muktamar Hendarna

ABSTRAKPada umumnya lahan basah dikelola menjadi area pertanian ataupun perkebunan. Fungsi lahan basah memiliki fungsi ekologis seperti pengendali banjir, pencegah intrusi air laut, erosi, pencemaran, dan pengendali iklim global. Data pengindraan jauh yang digunakan pengelolaan lahan basah yaitu pengindraan jauh optik dan radar. Tujuan dari penelitian ini adalah mengeksplorasi korelasi potensial dari data optik dan radar untuk mengamati dinamika pada kawasan lahan basah tersebut dan melakukan pemetaan. Metode yang digunakan pada pengindraan jauh optik yaitu LST (Land Surface Temperature) berdasarkan Citra Satelit Landsat-8 dan metode yang digunakan pada pengindraan jauh radar yaitu estimasi kelembaban tanah berdasarkan Citra Satelit Sentinel-1A. Hasil pengamatan dinamika dan pemetaan pada wilayah Kabupaten Bandung Raya memiliki nilai kelembaban tanah tertinggi pada Bulan Mei dengan nilai kelembapan tanah tanah rata-rata sebesar 20,9 % pada polarisasi VH. Suhu permukaan tanah terendah terjadi pada bulan Mei dengan nilai suhu rata-rata sebesar 19.5 °C. Kolerasi antara nilai kelembapan tanah tanah dan suhu permukaan tanah pada wilayah Kabupaten Bandung Raya berdasarkan metode koefisien determinasi sebesar R2=0.705 didapatkan bahwa semakin tinggi nilai kelembapan tanah tanah maka nilai suhu permukaan tanah akan semakin rendah.Kata kunci: Kawasan lahan basah, Pengindraan Jauh Optik, Pengindraan Jauh Radar, Pengamatan Dinamika, Pemetaan. ABSTRACTIn general wetlands managed become an area of agriculture or plantations. The extent of wetland that has been used can be damaged if it is not managed properly and integrated.. The purpose of this research is to explore the potential correlations between several parameters of optical and radar data to observe the dynamics of wetlands area and mapping the wetlands area. The methodology that was used in optical remote sensing is LST (Land Surface Temperature) based on Landsat-8 Satellite Image and the method used in remote radar sensing is estimation of soil moisture based on Sentinel-1A Satellite Image. The result of the observation in the area and mapping the dynamics in Bandung Raya District had the highest soil moisture values in May with 27% of soil water level in VH polarization and 78.1% in VV polarization and the lowest value in each month is 11.8% and the highest soil surface temperature in August with a value 37.9 ° C and the minimum value 19 ° C..Keywords: Wetland Area, Optical Remote Sensing, Remote Radar Sensing, Dynamics Observation, Mapping.


2018 ◽  
Vol 55 (4C) ◽  
pp. 136
Author(s):  
Nguyen Huynh Anh Tuyet

Thermal remote sensing with its own concepts and potentials has presented a variety of applications in the atmosphere and land surface temperature (LST) variation detection. The objective of this study is to access the LST variation in the dry season of Binh Duong province for understanding the effect of land-use change on the microclimate conditions. The spectral radiation value was determined from gray-scale of thermal infrared images of Landsat 7 ETM+ and Landsat 8 OLI/TIRs, followed by the LST calculation. Results showed that the LST in dry season decreased approximately 1.5 °C over the past 15 years from 30.8 °C in the year 2002 to 29.3 °C in the year 2016, due to a large area of newly planted land of industrial trees changed into mature ones in 2016. The area, in which temperature increased corresponding to 16.6 % of the natural square, has developed rapidly with new industrial parks, urban areas, and vacant land areas. Therefore, the Government should have solutions to promote its positive side and mitigate its negative side by a suitable land-use structure in order to both develop the economic continuously and help to mitigate the climate change effects.


Author(s):  
Muhammad Nasar -u-Minallah

Land surface temperature (LST) is an important parameter in global climate change and urban thermalenvironmental studies. The significance of land surface temperature is being acknowledged gradually and interest isincreasing in developing methodologies for the retrieval of LST from Satellite Remote Sensing (SRS) data. ThermalInfrared Sensor (TIRS) of Landsat-8 is the newest TIR sensor for the Landsat Data Continuity Mission (LDCM),offering two adjacent thermal infrared bands (10, 11), having significant beneficiary for the land surface temperatureinversion. The spectral radiance can be estimated through TIR bands 10 and 11 of Landsat-8 OLI_TIRS satellite image.In the present study, the radiative transfer equation-based method has been employed in estimating LST of Lahore andthe analysis demonstrated that estimated LST has the highest accuracy from the radiative transfer method through band10. Land Surface Emissivity (LSE) was derived with the aid of the NDVI’s threshold technique. The present studyresults show that as the built-up area increases and vegetation cover decreases in urban surface, they are linked toincrease in urban land surface temperature and conversely larger vegetation cover associated with lower urbantemperature. The output exposed that LST was high in built-up and barren land, whereas it was low in the area wherethere were more vegetation cover and water.


Sign in / Sign up

Export Citation Format

Share Document