scholarly journals Characterizing Light Pollution Trends across Protected Areas in China Using Nighttime Light Remote Sensing Data

2018 ◽  
Vol 7 (7) ◽  
pp. 243 ◽  
Author(s):  
Wei Jiang ◽  
Guojin He ◽  
Wanchun Leng ◽  
Tengfei Long ◽  
Guizhou Wang ◽  
...  
2020 ◽  
Vol 42 ◽  
pp. 69-81

Light pollution in Slovenia in 2019 with special regard to Natura 2000 areas The article shows the state of light pollution in Slovenia. Remote sensing data from the Suomi satellite were analysed. Light pollution is shown by radiance expressed in nW/(sr cm2 ). In Slovenia, there are large differences in state of light polution. The most polluted areas are located in the area of larger settlements and in areas with higher levels of infrastructure. The spread of light does not stop at the borders of protected areas, so we also analyzed the state of light pollution in Natura 2000 sites in Slovenia. It turns out that the most lightpolluted areas are those that lie around larger settlements or suburbanised regions (Ljubljansko Barje, Šmarna gora, Drava).


2013 ◽  
Vol 43 (4) ◽  
pp. 5
Author(s):  
Maria Elena Menconi ◽  
David Grohmann

This study aimed to test the effectiveness of protected areas to preserve vegetation. The first step was to identify vegetation suitable areas, designed as areas with optimal morphological terrain features for a good photosynthetic activity. These areas were defined according to the following landscape factors: slope, altitude, aspect and land use. Enhanced vegetation index (EVI) was chosen as vegetation dynamics indicator. This method is based on a statistical approach using remote sensing data in a geographic information system (GIS) environment. The correlation between EVI and landscape factor was evaluated using the frequency ratio method. Classes of landscape factors that show good correlation with a high EVI were combined to obtain vegetation suitable areas. Once identified, these areas and their vegetation dynamics were analysed by comparing the results obtained whenever these areas are included or not included in protected areas. A second EVI dataset was used to verify the accuracy in identifying vegetation suitable areas and the influence of each landscape factor considered in their identification. This validation process showed that vegetation suitable areas are significant in identifying areas with good photosynthetic activity. The effects analysis showed a positive influence of all landscape factors in determining suitability. This methodology, applied to central regions of Italy, shows that the vegetation suitable areas located inside protected areas are <em>greener</em> than those outside protected areas. This suggests that the protective measures established by the institution of the parks have proved to be effective, at least as far as the status of vegetation development is concerned.


2018 ◽  
Vol 100 ◽  
pp. 101-115 ◽  
Author(s):  
Ana I.R. Cabral ◽  
Carlos Saito ◽  
Henrique Pereira ◽  
Anne Elisabeth Laques

2017 ◽  
Vol 70 ◽  
pp. 34-42 ◽  
Author(s):  
Qiming Zheng ◽  
Jingsong Deng ◽  
Ruowei Jiang ◽  
Ke Wang ◽  
Xingyu Xue ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2728 ◽  
Author(s):  
Bo Sun ◽  
Yang Zhang ◽  
Qiming Zhou ◽  
Duo Gao

Most studies on light pollution are based on light intensity retrieved from nighttime light (NTL) remote sensing with less consideration of the population factors. Furthermore, the coarse spatial resolution of traditional NTL remote sensing data limits the refined applications in current smart city studies. In order to analyze the influence of light pollution on populated areas, this study proposes an index named population exposure to light pollution (PELP) and conducts a street-scale analysis to illustrate spatial variation of PELP among residential areas in cites. By taking Shenzhen city as a case, multi-source data were combined including high resolution NTL remote sensing data from the Luojia 1-01 satellite sensor, high-precision mobile big data for visualizing human activities and population distribution as well as point of interest (POI) data. Results show that the main influenced areas of light pollution are concentrated in the downtown and core areas of newly expanded areas with obvious deviation corrected like traditional serious light polluted regions (e.g., ports). In comparison, commercial–residential mixed areas and village-in-city show a high level of PELP. The proposed method better presents the extent of population exposure to light pollution at a fine-grid scale and the regional difference between different types of residential areas in a city.


2020 ◽  
Vol 12 (12) ◽  
pp. 5016
Author(s):  
Lijun Mao ◽  
Mingshi Li ◽  
Wenjuan Shen

Terrestrial protected areas (PAs) play an essential role in maintaining biodiversity and ecological processes worldwide, and the monitoring of PAs is a useful tool in assessing the effectiveness of PA management. Advanced remote sensing technologies have been increasingly used for mapping and monitoring the dynamics of PAs. We review the advances in remote sensing-based approaches for monitoring terrestrial PAs in the last decade and identify four types of studies in this field: land use & land cover and vegetation community classification, vegetation structure quantification, natural disturbance monitoring, and land use & land cover and vegetation dynamic analysis. We systematically discuss the satellite data and methods used for monitoring PAs for the four research objectives. Moreover, we summarize the approaches used in the different types of studies. The following suggestions are provided for future studies: (1) development of remote sensing frameworks for local PA monitoring worldwide; (2) comprehensive utilization of multisource remote sensing data; (3) improving methods to investigate the details of PA dynamics; (4) discovering the driving forces and providing measures for PA management. Overall, the integration of remote sensing data and advanced processing methods can support PA management and decision-making procedures.


Sign in / Sign up

Export Citation Format

Share Document