scholarly journals Random Forest-Based Landslide Susceptibility Mapping in Coastal Regions of Artvin, Turkey

2020 ◽  
Vol 9 (9) ◽  
pp. 553
Author(s):  
Halil Akinci ◽  
Cem Kilicoglu ◽  
Sedat Dogan

Natural disasters such as landslides often occur in the Eastern Black Sea region of Turkey owing to its geological, topographical, and climatic characteristics. Landslide events occur nearly every year in the Arhavi, Hopa, and Kemalpaşa districts located on the Black Sea coast in the Artvin province. In this study, the landslide susceptibility map of the Arhavi, Hopa, and Kemalpaşa districts was produced using the random forest (RF) model, which is widely used in the literature and yields more accurate results compared with other machine learning techniques. A total of 10 landslide-conditioning factors were considered for the susceptibility analysis, i.e., lithology, land cover, slope, aspect, elevation, curvature, topographic wetness index, and distances from faults, drainage networks, and roads. Furthermore, 70% of the landslides on the landslide inventory map were used for training, and the remaining 30% were used for validation. The RF-based model was validated using the area under the receiver operating characteristic (ROC) curve. Evaluation results indicated that the success and prediction rates of the model were 98.3% and 97.7%, respectively. Moreover, it was determined that incorrect land-use decisions, such as transforming forest areas into tea and hazelnut cultivation areas, induce the occurrence of landslides.


2021 ◽  
Author(s):  
Md. Sharafat Chowdhury ◽  
Bibi Hafsa

Abstract This study attempts to produce Landslide Susceptibility Map for Chattagram District of Bangladesh by using five GIS based bivariate statistical models, namely the Frequency Ratio (FR), Shanon’s Entropy (SE), Weight of Evidence (WofE), Information Value (IV) and Certainty Factor (CF). A secondary landslide inventory database was used to correlate the previous landslides with the landslide conditioning factors. Sixteen landslide conditioning factors of Slope Aspect, Slope Angle, Geology, Elevation, Plan Curvature, Profile Curvature, General Curvature, Topographic Wetness Index, Stream Power Index, Sediment Transport Index, Topographic Roughness Index, Distance to Stream, Distance to Anticline, Distance to Fault, Distance to Road and NDVI were used. The Area Under Curve (AUC) was used for validation of the LSMs. The predictive rate of AUC for FR, SE, WofE, IV and CF were 76.11%, 70.11%, 78.93%, 76.57% and 80.43% respectively. CF model indicates 15.04% of areas are highly susceptible to landslide. All the models showed that the high elevated areas are more susceptible to landslide where the low-lying river basin areas have a low probability of landslide occurrence. The findings of this research will contribute to land use planning, management and hazard mitigation of the CHT region.



2021 ◽  
Vol 33 ◽  
Author(s):  
Mohammed El-Fengour ◽  
Hanifa El Motaki ◽  
Aissa El Bouzidi

This study aimed to assess landslide susceptibility in the Sahla watershed in northern Morocco. Landslides hazard is the most frequent phenomenon in this part of the state due to its mountainous precarious environment. The abundance of rainfall makes this area suffer mass movements led to a notable adverse impact on the nearby settlements and infrastructures. There were 93 identified landslide scars. Landslide inventories were collected from Google Earth image interpretations. They were prepared out of landslide events in the past, and future landslide occurrence was predicted by correlating landslide predisposing factors. In this paper, landslide inventories are divided into two groups, one for landslide training and the other for validation. The Landslide Susceptibility Map (LSM) is prepared by Logistic Regression (LR) Statistical Method. Lithology, stream density, land use, slope curvature, elevation, topographic wetness index, slope aspect, and slope angle were used as conditioning factors. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) was employed to examine the performance of the model. In the analysis, the LR model results in 96% accuracy in the AUC. The LSM consists of the predicted landslide area. Hence it can be used to reduce the potential hazard linked with the landslides in the Sahla watershed area in Rif Mountains in northern Morocco.



2021 ◽  
Vol 30 (4) ◽  
pp. 683-691
Author(s):  
G. Kavitha ◽  
S. Anbazhagan ◽  
S. Mani

Landslides are among the most prevalent and harmful hazards. Assessment of landslide susceptibility zonation is an important task in reducing the losses of lifeand properties. The present study aims to demarcate the landslide prone areas along the Vathalmalai Ghat road section (VGR) using remote sensing and GIS techniques. In the first step, the landslide causative factors such as geology, geomorphology, slope, slope aspect, land use / land cover, drainage density, lineament density, road buffer and relative relief were assessed. All the factors were assigned to rank and weight based on the slope stability of the landslide susceptibility zones. Then the thematic maps were integrated using ArcGIS tool and landslide susceptibility zonation was obtained and classified into five categories ; very low, low, moderate, high and very high. The landslide susceptibility map is validated with R-index and landslide inventory data collected from the field using GPS measurement. The distribution of susceptibility zones is ; 16.5% located in very low, 28.70% in low, 24.70% in moderate, 19.90% in high and 10.20% in very high zones. The R-index indicated that about 64% landslide occurences correlated with high to very high landslide susceptiblity zones. The model validation indicated that the method adopted in this study is suitable for landslide disaster mapping and planning.



Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1402 ◽  
Author(s):  
Nohani ◽  
Moharrami ◽  
Sharafi ◽  
Khosravi ◽  
Pradhan ◽  
...  

Landslides are the most frequent phenomenon in the northern part of Iran, which cause considerable financial and life damages every year. One of the most widely used approaches to reduce these damages is preparing a landslide susceptibility map (LSM) using suitable methods and selecting the proper conditioning factors. The current study is aimed at comparing four bivariate models, namely the frequency ratio (FR), Shannon entropy (SE), weights of evidence (WoE), and evidential belief function (EBF), for a LSM of Klijanrestagh Watershed, Iran. Firstly, 109 locations of landslides were obtained from field surveys and interpretation of aerial photographs. Then, the locations were categorized into two groups of 70% (74 locations) and 30% (35 locations), randomly, for modeling and validation processes, respectively. Then, 10 conditioning factors of slope aspect, curvature, elevation, distance from fault, lithology, normalized difference vegetation index (NDVI), distance from the river, distance from the road, the slope angle, and land use were determined to construct the spatial database. From the results of multicollinearity, it was concluded that no collinearity existed between the 10 considered conditioning factors in the occurrence of landslides. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used for validation of the four achieved LSMs. The AUC results introduced the success rates of 0.8, 0.86, 0.84, and 0.85 for EBF, WoE, SE, and FR, respectively. Also, they indicated that the rates of prediction were 0.84, 0.83, 0.82, and 0.79 for WoE, FR, SE, and EBF, respectively. Therefore, the WoE model, having the highest AUC, was the most accurate method among the four implemented methods in identifying the regions at risk of future landslides in the study area. The outcomes of this research are useful and essential for the government, planners, decision makers, researchers, and general land-use planners in the study area.



Author(s):  
Yue Wang ◽  
Deliang Sun ◽  
Haijia Wen ◽  
Hong Zhang ◽  
Fengtai Zhang

To compare the random forest (RF) model and the frequency ratio (FR) model for landslide susceptibility mapping (LSM), this research selected Yunyang Country as the study area for its frequent natural disasters; especially landslides. A landslide inventory was built by historical records; satellite images; and extensive field surveys. Subsequently; a geospatial database was established based on 987 historical landslides in the study area. Then; all the landslides were randomly divided into two datasets: 70% of them were used as the training dataset and 30% as the test dataset. Furthermore; under five primary conditioning factors (i.e., topography factors; geological factors; environmental factors; human engineering activities; and triggering factors), 22 secondary conditioning factors were selected to form an evaluation factor library for analyzing the landslide susceptibility. On this basis; the RF model training and the FR model mathematical analysis were performed; and the established models were used for the landslide susceptibility simulation in the entire area of Yunyang County. Next; based on the analysis results; the susceptibility maps were divided into five classes: very low; low; medium; high; and very high. In addition; the importance of conditioning factors was ranked and the influence of landslides was explored by using the RF model. The area under the curve (AUC) value of receiver operating characteristic (ROC) curve; precision; accuracy; and recall ratio were used to analyze the predictive ability of the above two LSM models. The results indicated a difference in the performances between the two models. The RF model (AUC = 0.988) performed better than the FR model (AUC = 0.716). Moreover; compared with the FR model; the RF model showed a higher coincidence degree between the areas in the high and the very low susceptibility classes; on the one hand; and the geographical spatial distribution of historical landslides; on the other hand. Therefore; it was concluded that the RF model was more suitable for landslide susceptibility evaluation in Yunyang County; because of its significant model performance; reliability; and stability. The outcome also provided a theoretical basis for application of machine learning techniques (e.g., RF) in landslide prevention; mitigation; and urban planning; so as to deliver an adequate response to the increasing demand for effective and low-cost tools in landslide susceptibility assessments.



2020 ◽  
Author(s):  
Suman Das

<p>Himalayan Terrain is highly susceptible to landslide events triggered by frequent earthquakes and heavy rainfall. In the recent past, cloud burst events are on rising, causing massive loss of life and property, mainly attributed to climate change and extensive anthropogenic activities in the mountain region as experienced in case of 2013 Kedarnath Tragedy. The study aimed to identify the potential landslide hazard zone in Mandakini valley by utilizing different types of data including Survey of India toposheet, geological (lithological and structural) maps, IRS-1D, LISS IV multispectral and PAN satellite sensor data and field observations. Relevant 18 thematic layers pertaining to the causative factors for landslide occurrences, such as slope, aspect, relative relief, lithology, tectonic structures, lineaments, LULC, NDVI, distance to drainage, drainage density and anthropogenic factors like distance to road, have been generated using remote sensing images, field survey, ancillary data and GIS techniques.  A detailed landslide susceptibility map was produced using a logistic regression method with datasets developed in GIS. which has further been categorized into four landslide susceptibility zones from high to very low. Finally, the receiver operating characteristic (ROC) curve was used to evaluate the accuracy of the logistic regression analysis model. ROC curve analysis showing an accuracy of 87.3 % for an independent set of test samples. The result also showed a strong agreement between the distribution of existing landslides and predicted landslide susceptibility zones. Consequently, this study could serve as an effective guide for further land-use planning and for the implementation of development.</p>



Author(s):  
S. Benchelha ◽  
H. Chennaoui Aoudjehane ◽  
M. Hakdaoui ◽  
R. El Hamdouni ◽  
H. Mansouri ◽  
...  

<p><strong>Abstract.</strong> The Rif is among the areas of Morocco most susceptible to landslides, because of the existence of relatively young reliefs marked by a very important dynamics compared to other regions. These landslides are one of the most serious problems on many levels: social, economic and environmental. The increase in the frequency and impact of landslides over the past decade has demonstrated the need for an in-depth study of these phenomena, allowing the identification of areas susceptible to landslides.</p><p> The main objective of this study is to identify the optimal method for the mapping of the area susceptible to landslides in municipality of Oudka. This area has been marked by the largest landslide in the region, caused by heavy rainfall in 2013. Two Statistical Methods i) Regression Logistics (LR) ii) Artificial Neural Networks (ANN), were used to create a landslide susceptibility map. The realization of this susceptibility map required, first, the mapping of old landslides by the aerial photography, the data of the geological map and by the data obtained using field surveys using GPS. A total of 105 landslides were mapped from these various sources. 50% of this database was used for model building and 50% for validation. Eight independent landslide factors are exploited to detect the most sensitive areas: altitude, slope, aspect, distance of faults, distance streams, distance from roads, lithology and vegetation index (NDVI).</p><p> The results of the landslide susceptibility analysis were verified using success and prediction rates. The success rate (AUC&amp;thinsp;=&amp;thinsp;0.918) and the prediction rate (AUC&amp;thinsp;=&amp;thinsp;0.901) of the LR model is higher than that of the ANN model (success rate (AUC&amp;thinsp;=&amp;thinsp;0.886) and prediction rate (AUC&amp;thinsp;=&amp;thinsp;0.877).</p><p> These results indicate that the Regression Logistic (LR) model is the best model for determining landslide susceptibility in the study area.</p>



2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Pawan Gautam ◽  
Tetsuya Kubota ◽  
Aril Aditian

AbstractThe main objective of this study is to understand the overall impact of earthquake in upper Indrawati Watershed, located in the high mountainous region of Nepal. Hence, we have assessed the relationship between the co-seismic landslide and underlying causative factors as well as performed landslide susceptibility mapping (LSM) to identify the landslide susceptible zone in the study area. We assessed the landslides distribution in terms of density, number, and area within 85 classes of 13 causal factors including slope, aspect, elevation, formation, land cover, distance to road and river, soil type, total curvature, seismic intensity, topographic wetness index, distance to fault, and flow accumulation. The earthquake-induced landslide is clustered in Northern region of the study area, which is dominated by steep rocky slope, forested land, and low human density. Among the causal factors, 'slope' showed positive correlation for landslide occurrence. Increase in slope in the study area also escalates the landslide distribution, with highest density at 43%, landslide number at 4.34/km2, and landslide area abundance at 2.97% in a slope class (> 50°). We used logistic regression (LR) for LSM integrating with geographic information system. LR analysis depicts that land cover is the best predictor followed by slope and distance to fault with higher positive coefficient values. LSM was validated by assessing the correctly classified landslides under susceptibility categories using area under curve (AUC) and seed cell area index (SCAI). The LSM approach showed good accuracy with respective AUC values for success rate and prediction rate of 0.843 and 0.832. Similarly, the decreasing SCAI value from very low to very high susceptibility categories advise satisfactory accuracy of the LSM approach.



2013 ◽  
Vol 13 (1) ◽  
pp. 28-40

A methodology for landslide susceptibility assessment to delineate landslide prone areas is presented using factor analysis and fuzzy membership functions and Geographic Information Systems (GIS). A landslide inventory of 51 landslides was created in the mountainous part of Xanthi prefecture (North Greece) and the associated conditioning factors were determined for each landslide by field work. Six conditioning factors were evaluated: slope angle, slope aspect, land use, geology, distance to faults and topographical elevation. Fuzzy membership functions were defined for each factor using the landslide frequency data. Factor analysis provided weights (i.e., importance for landslide occurrences) for each one of the above conditioning factors, indicating the most important factors as geology and slope angle. An overlay and index method was adopted to produce the landslide susceptibility map. In this map 96% of the observed landslides are located in very high and high susceptibility zones, indicating a suitable approach for landslide susceptibility mapping.



Sign in / Sign up

Export Citation Format

Share Document