scholarly journals A Three-Dimensional Visualization Framework for Underground Geohazard Recognition on Urban Road-Facing GPR Data

2020 ◽  
Vol 9 (11) ◽  
pp. 668
Author(s):  
Zhenwu Wang ◽  
Benting Wan ◽  
Mengjie Han

The identification of underground geohazards is always a difficult issue in the field of underground public safety. This study proposes an interactive visualization framework for underground geohazard recognition on urban roads, which constructs a whole recognition workflow by incorporating data collection, preprocessing, modeling, rendering and analyzing. In this framework, two proposed sampling point selection methods have been adopted to enhance the interpolated accuracy for the Kriging algorithm based on ground penetrating radar (GPR) technology. An improved Kriging algorithm was put forward, which applies a particle swarm optimization (PSO) algorithm to optimize the Kriging parameters and adopts in parallel the Compute Unified Device Architecture (CUDA) to run the PSO algorithm on the GPU side in order to raise the interpolated efficiency. Furthermore, a layer-constrained triangulated irregular network algorithm was proposed to construct the 3D geohazard bodies and the space geometry method was used to compute their volume information. The study also presents an implementation system to demonstrate the application of the framework and its related algorithms. This system makes a significant contribution to the demonstration and understanding of underground geohazard recognition in a three-dimensional environment.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4019
Author(s):  
Andrzej Szczurek ◽  
Monika Maciejewska

The basis of effective beekeeping is the information about the state of the bee colony. A rich source of respective information is beehive air. This source may be explored by applying gas sensing. It allows for classifying bee colony states based on beehive air measurements. In this work, we discussed the essential aspects of beehive air sampling and sensing device operation in apicultural applications. They are the sampling method (diffusive vs. dynamic, temporal aspects), sampling system (sample probe, sampling point selection, sample conditioning unit and sample delivery system) and device operation mode (‘exposure-cleaning’ operation). It was demonstrated how factors associated with the beehive, bee colony and ambient environment define prerequisites for these elements of the measuring instrument. These requirements have to be respected in order to assure high accuracy of measurement and high-quality information. The presented results are primarily based on the field measurement study performed in summer 2020, in three apiaries, in various meteorological conditions. Two exemplars of a prototype gas sensing device were used. These sensor devices were constructed according to our original concept.


2007 ◽  
Vol 364-366 ◽  
pp. 750-755 ◽  
Author(s):  
Xu Dong Yang ◽  
Jia Chun Li ◽  
Tie Bang Xie

A novel profilometer for three-dimensional (3D) surface topography measurement is presented. The profilometer has large measuring range, high precision and small measuring touch force. It is composed of a two-dimensional (2D) displacement sensor, a 3D platform based on vertical scanning, measuring and control circuits and an industrial control computer. When a workpiece is measured, the vertical undulation of the profile at a sampling point leads to a zero offset of the 2D displacement sensor. According to the zero offset, a piezoelectric actuator and a servo motor drive the vertical scanning platform to move vertically to ensure that the lever returns to its balance position. So the non-linear error caused by the rotation of the lever is very small even if the measuring range is large. When the stylus barges up against a steep wall, the horizontal resistance force results in another zero offset of the 2D displacement sensor. If the zero offset exceeds a quota, the vertical scanning platform descends to make the stylus climb the steep wall successfully. According to the theoretical and experimental analysis, the profilometer can measure roughness, profile of sphere, step, groove and other 3D surfaces with curvature precisely.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (24) ◽  
pp. 4653-4658 ◽  
Author(s):  
Jeremy E. Schonhorn ◽  
Syrena C. Fernandes ◽  
Anjali Rajaratnam ◽  
Rachel N. Deraney ◽  
Jason P. Rolland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document