scholarly journals Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

2016 ◽  
Vol 17 (8) ◽  
pp. 1216 ◽  
Author(s):  
Jamie Rose ◽  
Anushree Karkhanis ◽  
Björn Steiniger-Brach ◽  
Sara Jones
2020 ◽  
Author(s):  
Kathryn R. Przybysz ◽  
Meredith E. Gamble ◽  
Marvin R. Diaz

AbstractAdolescent alcohol exposure is associated with many negative outcomes that persist into adulthood, including altered affective and reward-related behaviors. However, the long-term neurological disruptions underlying these behavioral states are not fully understood. The basolateral amygdala (BLA) plays a critical role in many of these behaviors, and shifts in the excitatory/inhibitory balance in this area are capable of directly modulating their expression. While changes to BLA physiology have been demonstrated during the acute withdrawal phase following adolescent ethanol exposure, no studies to date have examined whether these persist long-term. The kappa opioid receptor (KOR) system is a neuromodulatory system that acts as a prominent mediator of negative affective behaviors, and alterations of this system have been implicated in the behavioral profile caused by chronic alcohol exposure in adulthood. Notably, in the BLA, the KOR system undergoes functional changes between adolescence and adulthood, but whether BLA KORs are functionally disrupted by adolescent ethanol exposure has not been examined. In this study, we exposed male and female Sprague-Dawley rats to a vapor inhalation model of moderate adolescent chronic intermittent ethanol (aCIE) and examined the long-term effects on GABAergic and glutamatergic neurotransmission within the adult BLA using whole-cell patch-clamp electrophysiology. We also assessed how KOR activation modulated these neurotransmitter systems in aCIE versus control rats using the selective KOR agonist, U69593. This investigation revealed that aCIE exposure disrupted basal glutamate transmission in females by increasing spontaneous excitatory postsynaptic current (sEPSC) frequency, while having no effects on glutamate transmission in males or GABA transmission in either sex. Interestingly, we also found that aCIE exposure unmasked a KOR-mediated suppression of spontaneous inhibitory postsynaptic current (sIPSC) frequency and sEPSC amplitude only in males, with no effects of aCIE exposure on KOR function in females. Together, these data suggest that moderate-level adolescent ethanol exposure produces long-term changes to BLA physiology and BLA KOR function, and that these changes are sex-dependent. This is the first study to examine persistent adaptations to both BLA physiology and KOR function following adolescent alcohol exposure, and opens a broad avenue for future investigation into other neurobiological and behavioral consequences of adolescent ethanol exposure-induced disruptions of these systems.


2020 ◽  
Author(s):  
Breanne E. Pirino ◽  
Mary B. Spodnick ◽  
Andrew T. Gargiulo ◽  
Genevieve R. Curtis ◽  
Jessica R. Barson ◽  
...  

ABSTRACTNeural circuit engagement within the nucleus accumbens (NAc) shell is implicated in the regulation of both negative and positive affect. Classically, the dynorphin/kappa opioid receptor (KOR) system in the NAc was believed to promote dysphoric behavior, while dopamine was viewed as interacting with reward behavior, and KOR activation was known to inhibit dopamine release. Recently, however, both the KOR and dopamine systems have, separately, been shown to have differential effects across the rostro-caudal axis of the NAc shell on hedonic responses. Whether or not this is due to interactions between KORs and dopamine, and if it extends to other affective behaviors, remains to be determined. In this study, we examined in rats the relationship between the KOR and dopamine systems in both the rostral and caudal NAc shell using ex vivo fast scan cyclic voltammetry and the impact of KOR activation on affective behavior using approach-avoidance assays. We report here that activation of KORs in the caudal NAc shell significantly inhibits dopamine release, stimulates novelty-induced rearing behavior, increases avoidance behavior, and reduces locomotor activity. In contrast, activation of KORs in the rostral NAc shell inhibits dopamine release to a lesser extent and instead increases approach behavior. Taken together, these results indicate that there is heterogeneity across the rostro-caudal axis of the NAc shell in the effects of KOR stimulation on affective behaviors, and they suggest that this might be due to differences in KOR control over dopamine release.


2015 ◽  
Vol 150 ◽  
pp. 24-30 ◽  
Author(s):  
Anushree N. Karkhanis ◽  
Jamie H. Rose ◽  
Kimberly N. Huggins ◽  
Joanne K. Konstantopoulos ◽  
Sara R. Jones

Sign in / Sign up

Export Citation Format

Share Document