scholarly journals Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus acutissima

2018 ◽  
Vol 19 (8) ◽  
pp. 2443 ◽  
Author(s):  
Xuan Li ◽  
Yongfu Li ◽  
Mingyue Zang ◽  
Mingzhi Li ◽  
Yanming Fang

Quercus acutissima, an important endemic and ecological plant of the Quercus genus, is widely distributed throughout China. However, there have been few studies on its chloroplast genome. In this study, the complete chloroplast (cp) genome of Q. acutissima was sequenced, analyzed, and compared to four species in the Fagaceae family. The size of the Q. acutissima chloroplast genome is 161,124 bp, including one large single copy (LSC) region of 90,423 bp and one small single copy (SSC) region of 19,068 bp, separated by two inverted repeat (IR) regions of 51,632 bp. The GC content of the whole genome is 36.08%, while those of LSC, SSC, and IR are 34.62%, 30.84%, and 42.78%, respectively. The Q. acutissima chloroplast genome encodes 136 genes, including 88 protein-coding genes, four ribosomal RNA genes, and 40 transfer RNA genes. In the repeat structure analysis, 31 forward and 22 inverted long repeats and 65 simple-sequence repeat loci were detected in the Q. acutissima cp genome. The existence of abundant simple-sequence repeat loci in the genome suggests the potential for future population genetic work. The genome comparison revealed that the LSC region is more divergent than the SSC and IR regions, and there is higher divergence in noncoding regions than in coding regions. The phylogenetic relationships of 25 species inferred that members of the Quercus genus do not form a clade and that Q. acutissima is closely related to Q. variabilis. This study identified the unique characteristics of the Q. acutissima cp genome, which will provide a theoretical basis for species identification and biological research.

2020 ◽  
Author(s):  
Zhenchao Zhang ◽  
Zhongliang Dai ◽  
Yuemei Yao ◽  
Yongfei Pan ◽  
Guosheng Sun ◽  
...  

Abstract Backgrounds: Broccoli (Brassica. oleracea var. italica L.) is known as one of the most nutritionally rich vegetables, as well as rich in functional components that benefit to health. The main purposes of this research were sequencing, assembling and annotation of chloroplast genome of broccoli based on Illumina HiSeq2500 sequencing platform. Results: The size of the broccoli cp genome is 153,364 bp, including two inverted repeat (IR) regions of 26,197 bp each, separated by a small single copy (SSC) region of 17,834 bp and a large single copy (LSC) region of 83,136 bp. The GC content of the complete genome is 36.36%, while those of SSC, LSC, and IR are 29.1%, 34.15% and 42.35%, respectively. It harbors 134 functional genes, including 87 protein-coding genes, 39 tRNAs and 8 rRNAs, with 31 duplicates in the IRs. The most abundant amino acid in the protein-coding genes is leucine, while the least is cysteine. Codon usage frequency showed bias for A/T-ending codons in the cp genome. In the repeat structure analysis, a total of 34 repeat sequences and 291 simple sequence repeat (SSRs) were detected in the work. Although cp genomic structure and size are highly conserved, the SC-IR boundary regions are variable between the 7 cp genomes. The phylogenetic relationships based on complete cp genome from 9 species suggest that B. oleracea var. italica is closely related to Brassica juncea. Conclusions: The complete cp genome sequence was obtained and annotated for broccoli for the first time. The information acquired from this research will be useful for further species identification, population genetics and biological research of broccoli.


2021 ◽  
Author(s):  
Jiaxin Yang ◽  
Guoxiong Hu ◽  
Guangwan Hu

Abstract Background Handeliodendron Rehder and Eurycorymbus Hand.-Mazz. are the monotypic genera in the Sapindaceae family. The phylogenetic relationship of these endangered species Handeliodendron bodinieri (Lévl.) Rehd. and Eurycorymbus cavaleriei (Lévl.) Rehd. et Hand.-Mazz. with other members of Sapindaceae s.l. is not well resolved. A previous study concluded that the genus Aesculus might be paraphyletic because Handeliodendron was nested within it based on small DNA fragments. Thus, their chloroplast genomic information and comparative genomic analysis with other Sapindaceae species are necessary and crucial to understand the circumscription and plastome evolution of this family. Results The chloroplast genome sizes of Handeliodendron bodinieri and Eurycorymbus cavaleriei are 151,271 and 158,690 bp, respectively. Results showed that a total of 114 unique genes were annotated in H. bodinieri and E. cavaleriei, and the ycf1 gene contained abundant SSRs in both genomes. Comparative analysis revealed that gene content, PCGs, and total GC content were remarkably similar or identical within 13 genera from Sapindaceae, and the chloroplast genome size of four genera was generally smaller within the family, including Acer, Dipteronia, Aesculus, and Handeliodendron. IR boundaries of the H. bodinieri showed a significant contraction, whereas it presented a notable expansion in E. cavaleriei cp genome. Ycf1, ndhC-trnV-UAC, and rpl32-trnL-UAG-ccsA were remarkably divergent regions in the Sapindaceae species. Phylogenetic analysis based on different datasets, including whole chloroplast genome sequences, coding sequences, large single-copy, small single-copy, and inverted repeat regions, consistently demonstrated that H. bodinieri was sister to the clade consisted of Aesculus chinensis and A. wangii, strongly support Eurycorymbus cavaleriei as sister to Dodonaea viscosa. Conclusion This study revealed that the cp genome size of the Hippocastanoideae was generally smaller across Sapindaceae, and three highly divergent regions could be used as the specific DNA barcodes within Sapindaceae. Phylogenetic results strongly support that the subdivision of four subfamilies within Sapindaceae, and Handeliodendron is not nested within the genus Aesculus.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Samaila S. Yaradua ◽  
Dhafer A. Alzahrani ◽  
Enas J. Albokhary ◽  
Abidina Abba ◽  
Abubakar Bello

The complete chloroplast genome of J. flava, an endangered medicinal plant in Saudi Arabia, was sequenced and compared with cp genome of three Acanthaceae species to characterize the cp genome, identify SSRs, and also detect variation among the cp genomes of the sampled Acanthaceae. NOVOPlasty was used to assemble the complete chloroplast genome from the whole genome data. The cp genome of J. flava was 150, 888bp in length with GC content of 38.2%, and has a quadripartite structure; the genome harbors one pair of inverted repeat (IRa and IRb 25, 500bp each) separated by large single copy (LSC, 82, 995 bp) and small single copy (SSC, 16, 893 bp). There are 132 genes in the genome, which includes 80 protein coding genes, 30 tRNA, and 4 rRNA; 113 are unique while the remaining 19 are duplicated in IR regions. The repeat analysis indicates that the genome contained all types of repeats with palindromic occurring more frequently; the analysis also identified total number of 98 simple sequence repeats (SSR) of which majority are mononucleotides A/T and are found in the intergenic spacer. The comparative analysis with other cp genomes sampled indicated that the inverted repeat regions are conserved than the single copy regions and the noncoding regions show high rate of variation than the coding region. All the genomes have ndhF and ycf1 genes in the border junction of IRb and SSC. Sequence divergence analysis of the protein coding genes showed that seven genes (petB, atpF, psaI, rpl32, rpl16, ycf1, and clpP) are under positive selection. The phylogenetic analysis revealed that Justiceae is sister to Ruellieae. This study reported the first cp genome of the largest genus in Acanthaceae and provided resources for studying genetic diversity of J. flava as well as resolving phylogenetic relationships within the core Acanthaceae.


Author(s):  
Liu Li ◽  
Yang Yang ◽  
Li Xiujie ◽  
Li Bo

Vitis vinifera ‘Guifeimeigui’ is a diploid table grape, a Eurasian species. This research first reported the complete chloroplast (cp) genome of Vitis vinifera ‘Guifeimeigui’. The size of the complete cp genome is 160,928 bp and its GC content is 37.38%, including a pair of inverted repeats (26,353 bp each) separated by large (89,150 bp) and small (19,072 bp) single-copy regions. It encodes 85 genes, including 40 protein coding genes, 37 transfer RNA genes (tRNA), and 8 ribosomal RNA genes (rRNA). The Maximum Likelihood (ML) phylogenetic tree demonstrated that Vitis vinifera ‘Guifeimeigui’ is close to Vitis vinifera.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jiaxin Yang ◽  
Guoxiong Hu ◽  
Guangwan Hu

Abstract Background Handeliodendron Rehder and Eurycorymbus Hand.-Mazz. are the monotypic genera in the Sapindaceae family. The phylogenetic relationship of these endangered species Handeliodendron bodinieri (Lévl.) Rehd. and Eurycorymbus cavaleriei (Lévl.) Rehd. et Hand.-Mazz. with other members of Sapindaceae s.l. is not well resolved. A previous study concluded that the genus Aesculus might be paraphyletic because Handeliodendron was nested within it based on small DNA fragments. Thus, their chloroplast genomic information and comparative genomic analysis with other Sapindaceae species are necessary and crucial to understand the circumscription and plastome evolution of this family. Results The chloroplast genome sizes of Handeliodendron bodinieri and Eurycorymbus cavaleriei are 151,271 and 158,690 bp, respectively. Results showed that a total of 114 unique genes were annotated in H. bodinieri and E. cavaleriei, and the ycf1 gene contained abundant SSRs in both genomes. Comparative analysis revealed that gene content, PCGs, and total GC content were remarkably similar or identical within 13 genera from Sapindaceae, and the chloroplast genome size of four genera was generally smaller within the family, including Acer, Dipteronia, Aesculus, and Handeliodendron. IR boundaries of the H. bodinieri showed a significant contraction, whereas it presented a notable expansion in E. cavaleriei cp genome. Ycf1, ndhC-trnV-UAC, and rpl32-trnL-UAG-ccsA were remarkably divergent regions in the Sapindaceae species. Analysis of selection pressure showed that there are a few positively selected genes. Phylogenetic analysis based on different datasets, including whole chloroplast genome sequences, coding sequences, large single-copy, small single-copy, and inverted repeat regions, consistently demonstrated that H. bodinieri was sister to the clade consisting of Aesculus chinensis and A. wangii and strongly support Eurycorymbus cavaleriei as sister to Dodonaea viscosa. Conclusion This study revealed that the cp genome size of the Hippocastanoideae was generally smaller compared to the other subfamilies within Sapindaceae, and three highly divergent regions could be used as the specific DNA barcodes within Sapindaceae. Phylogenetic results strongly support that the subdivision of four subfamilies within Sapindaceae, and Handeliodendron is not nested within the genus Aesculus.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yongtan Li ◽  
Yan Dong ◽  
Yichao Liu ◽  
Xiaoyue Yu ◽  
Minsheng Yang ◽  
...  

In this study, we assembled and annotated the chloroplast (cp) genome of the Euonymus species Euonymus fortunei, Euonymus phellomanus, and Euonymus maackii, and performed a series of analyses to investigate gene structure, GC content, sequence alignment, and nucleic acid diversity, with the objectives of identifying positive selection genes and understanding evolutionary relationships. The results indicated that the Euonymus cp genome was 156,860–157,611bp in length and exhibited a typical circular tetrad structure. Similar to the majority of angiosperm chloroplast genomes, the results yielded a large single-copy region (LSC) (85,826–86,299bp) and a small single-copy region (SSC) (18,319–18,536bp), separated by a pair of sequences (IRA and IRB; 26,341–26,700bp) with the same encoding but in opposite directions. The chloroplast genome was annotated to 130–131 genes, including 85–86 protein coding genes, 37 tRNA genes, and eight rRNA genes, with GC contents of 37.26–37.31%. The GC content was variable among regions and was highest in the inverted repeat (IR) region. The IR boundary of Euonymus happened expanding resulting that the rps19 entered into IR region and doubled completely. Such fluctuations at the border positions might be helpful in determining evolutionary relationships among Euonymus. The simple-sequence repeats (SSRs) of Euonymus species were composed primarily of single nucleotides (A)n and (T)n, and were mostly 10–12bp in length, with an obvious A/T bias. We identified several loci with suitable polymorphism with the potential use as molecular markers for inferring the phylogeny within the genus Euonymus. Signatures of positive selection were seen in rpoB protein encoding genes. Based on data from the whole chloroplast genome, common single copy genes, and the LSC, SSC, and IR regions, we constructed an evolutionary tree of Euonymus and related species, the results of which were consistent with traditional taxonomic classifications. It showed that E. fortunei sister to the Euonymus japonicus, whereby E. maackii appeared as sister to Euonymus hamiltonianus. Our study provides important genetic information to support further investigations into the phylogenetic development and adaptive evolution of Euonymus species.


2018 ◽  
Author(s):  
Zerui Yang ◽  
Yuying Huang ◽  
Xiasheng Zheng ◽  
Song Huang ◽  
Lingling Liang

Lycium chinense Mill, an important Chinese herbal medicine, is emphasized as a healthy food and is widely used as a dietary supplement. Here we sequenced and analyzed the complete chloroplast (CP) genome of the L. chinense, which is 155,756 bp in length and with 37.8% GC content. This CP genome consists of a pair of inverted repeat regions (IRa and IRb) of 25,476 bp, separated by a large single-copy region (LSC) and a small single-copy region (SSC), with length of 86,595 and 18,209 bp, respectively. Annotation results revealed that the L. chinense CP genome contains 114 genes, 16 of which are duplicated genes. Most of the 85 protein-coding genes have a usual ATG start codon, except for 3 genes including rps12, psbL and ndhD. Furthermore, most of the simple sequence repeats (SSRs) are short polyadenine or polythymine repeats that contribute to the high AT content of the chloroplast genome. Revealing of the complete sequences and annotation of the L. chinense chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species.


2018 ◽  
Author(s):  
Zerui Yang ◽  
Yuying Huang ◽  
Xiasheng Zheng ◽  
Song Huang ◽  
Lingling Liang

Lycium chinense Mill, an important Chinese herbal medicine, is emphasized as a healthy food and is widely used as a dietary supplement. Here we sequenced and analyzed the complete chloroplast (CP) genome of the L. chinense, which is 155,756 bp in length and with 37.8% GC content. This CP genome consists of a pair of inverted repeat regions (IRa and IRb) of 25,476 bp, separated by a large single-copy region (LSC) and a small single-copy region (SSC), with length of 86,595 and 18,209 bp, respectively. Annotation results revealed that the L. chinense CP genome contains 114 genes, 16 of which are duplicated genes. Most of the 85 protein-coding genes have a usual ATG start codon, except for 3 genes including rps12, psbL and ndhD. Furthermore, most of the simple sequence repeats (SSRs) are short polyadenine or polythymine repeats that contribute to the high AT content of the chloroplast genome. Revealing of the complete sequences and annotation of the L. chinense chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species.


2019 ◽  
Author(s):  
Xuemin Ye ◽  
Dongnan Hu ◽  
Yangping Guo ◽  
Rongxi Sun

AbstractCastanopsis sclerophylla (Lindl.) Schott is an important species of evergreen broad-leaved forest in subtropical area and has important ecological and economic value. However, there are little studies on its chloroplast genome. In this study, the complete chloroplast genome sequences of C. sclerophylla was reported based on the Illumina Hiseq 2500 platform. The complete chloroplast genome of C. sclerophylla was 160,497bp, including a pair of inverted repeated (IRs) regions (25,675bp) that were separated by a large single copy (LSC) region of 90,255bp, and a small single copy (SSC) region of 18,892bp. The overall GC content of chloroplast genome was 36.82%. A total of 131 genes were found, of these 111 genes were unique and annotated, including 79 protein-coding genes, 27 transfer RNA genes (tRNAs), and four ribosomal RNA genes (rRNAs). Twenty-one genes were found to be duplicated in the IR regions. Comparative analysis indicated that IR contraction might be the reason for the relatively smaller chloroplast genome size of C. sclerophylla compared with other three congeneric species. Sequence analysis detected that the LSC and SSC regions were more divergent than the IR regions within the Castanopsis, furthermore, a higher divergence was found in non-coding regions than in coding regions. The maximum likelihood (ML) phylogenetic analysis showed that these four species of the genus Castanopsis formed a monophyletic clade and that C. sclerophylla is closely related to Castanopsis hainanensis with strong bootstrap values. These results not only provide basic knowledge about characteristics of C. sclerophylla and also enhance our understanding of Castanopsis species evolution within the Fagaceae family. Meanwhile, these findings will contribute to the exploration, utilization and conservation genetics of C. sclerophylla.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2917 ◽  
Author(s):  
Xin Zhang ◽  
Chunxiao Rong ◽  
Ling Qin ◽  
Chuanyuan Mo ◽  
Lu Fan ◽  
...  

Malus hupehensis belongs to the Malus genus (Rosaceae) and is an indigenous wild crabapple of China. This species has received more and more attention, due to its important medicinal, and excellent ornamental and economical, values. In this study, the whole chloroplast (cp) genome of Malus hupehensis, using a Hiseq X Ten sequencing platform, is reported. The M. hupehensis cp genome is 160,065 bp in size, containing a large single copy region (LSC) of 88,166 bp and a small single copy region (SSC) of 19,193 bp, separated by a pair of inverted repeats (IRs) of 26,353 bp. It contains 112 genes, including 78 protein-coding genes (PCGs), 30 transfer RNA genes (tRNAs), and four ribosomal RNA genes (rRNAs). The overall nucleotide composition is 36.6% CG. A total of 96 simple sequence repeats (SSRs) were identified, most of them were found to be mononucleotide repeats composed of A/T. In addition, a total of 49 long repeats were identified, including 24 forward repeats, 21 palindromic repeats, and four reverse repeats. Comparisons of the IR boundaries of nine Malus complete chloroplast genomes presented slight variations at IR/SC boundaries regions. A phylogenetic analysis, based on 26 chloroplast genomes using the maximum likelihood (ML) method, indicates that M. hupehensis clustered closer ties with M. baccata, M. micromalus, and M. prunifolia than with M. tschonoskii. The availability of the complete chloroplast genome using genomics methods is reported here and provides reliable genetic information for future exploration on the taxonomy and phylogenetic evolution of the Malus and related species.


Sign in / Sign up

Export Citation Format

Share Document