malus hupehensis
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 46)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Qi Chen ◽  
Yanpeng Wang ◽  
Zhijun Zhang ◽  
Xiaomin Liu ◽  
Chao Li ◽  
...  

Arginine plays an important role in the nitrogen (N) cycle because it has the highest ratio of N to carbon among amino acids. In recent years, there has been increased research interest in improving the N use of plants, reducing the use of N fertilizer, and enhancing the tolerance of plants to N deficiency. Here, the function of arginine in the growth of apple (Malus hupehensis) under N deficiency was explored. The application of 100 μmol L–1 arginine was effective for alleviating N-deficiency stress. Exogenous arginine promoted the absorption and use of N, phosphorus (P), and potassium (K) under low N stress. The net photosynthetic rate, maximal photochemical efficiency of photosystem II, and chlorophyll content were higher in treated plants than in control plants. Exogenous arginine affected the content of many metabolites, and the content of many amino acids with important functions was significantly increased, such as glutamate and ornithine, which play an important role in the urea cycle. Half of the metabolites were annotated to specialized metabolic pathways, including the synthesis of phenolic substances, flavonoids, and other substances with antioxidant activity. Our results indicate that arginine promotes the plant photosynthetic capacity and alters amino acid metabolism and some antioxidants including phenolic substances and flavonoids to improve the tolerance of apple to N deficiency, possibly through the improvement of arginine content, and the absorption of mineral.


2021 ◽  
Vol 289 ◽  
pp. 110419
Author(s):  
Jiangping Mao ◽  
Chundong Niu ◽  
Shiyue Chen ◽  
Yichao Xu ◽  
Abid Khan ◽  
...  

HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Rong Zhang ◽  
Zhubing Yan ◽  
Yikun Wang ◽  
Xuesen Chen ◽  
Chengmiao Yin ◽  
...  

A pot experiment was performed to investigate the effects of Trichoderma harzianum on the root morphology of Malus hupehensis Rehd. seedlings and their soil environment under replant conditions. The experiment consisted of four treatments: continuously cropped soil (CK1), methyl bromide fumigation (CK2), carrier substrate control (T1), and T. harzianum fertilizer (T2). Plant growth parameters, soil phenolic acid content, abundance of soil microorganisms, and root respiration rate were measured. Compared with CK1, plant height, basal diameter, and fresh weight were 34.58%, 27.55%, and 32.91% greater in T2; 11.35%, 12.10%, and 18.33% greater in T1; and 54.34%, 57.64%, and 45.74% greater in CK2. These metrics were significantly higher in the CK2 treatment than in the other treatments. The second highest values were recorded in the T2 treatment. Differences in root architecture were consistent with differences in biomass. Application of T. harzianum fertilizer was associated with increases of 45.45%, 120.06%, 86.44%, and 268.29% in the activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), respectively, and there was little difference between T2 and CK2. The contents of phlorizin and phloretin were 39.39% and 51.70% less in T2, respectively, and 17.85% and 18.14% less in T1, respectively, compared with CK1. Trichoderma harzianum fertilizer increased the abundance of bacteria and actinomycetes while decreasing that of fungi. The gene copy numbers of Fusarium oxysporum and Fusarium moniliforme were 64.30% and 49.35% less, respectively, in the T2 treatment. The fungus population and the gene copy number of Fusarium oxysporum and Fusarium moniliforme was the least in CK2 because of the good sterilization effect. The T. harzianum fertilizer showed satisfactory effects in promoting the root growth of M. hupehensis, increasing the root resistance, decreasing the soil phenolic acid content, and significantly reducing the gene copy number of F. oxysporum and F. moniliforme. In summary, T. harzianum fertilizer is an effective and green alternative for the prevention and control of apple replant disease (ARD).


ACS Omega ◽  
2021 ◽  
Author(s):  
Ran Chen ◽  
Weitao Jiang ◽  
Yanan Duan ◽  
Hongyuan Qiao ◽  
Hai Fan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Huan Li ◽  
Ting-Ting Yu ◽  
Yuan-Sheng Ning ◽  
Hao Li ◽  
Wei-Wei Zhang ◽  
...  

Malus hupehensis Rehd. var. pingyiensis Jiang (Pingyi Tiancha, PYTC) is an excellent apple rootstock and ornamental tree, but its tolerance to salt stress is weak. Our previous study showed that hydrogen sulfide (H2S) could alleviate damage in M. hupehensis roots under alkaline salt stress. However, the molecular mechanism of H2S mitigation alkaline salt remains to be elucidated. MicroRNAs (miRNAs) play important regulatory roles in plant response to salt stress. Whether miRNAs are involved in the mitigation of alkaline salt stress mediated by H2S remains unclear. In the present study, through the expression analysis of miRNAs and target gene response to H2S and alkaline salt stress in M. hupehensis roots, 115 known miRNAs (belonging to 37 miRNA families) and 15 predicted novel miRNAs were identified. In addition, we identified and analyzed 175 miRNA target genes. We certified the expression levels of 15 miRNAs and nine corresponding target genes by real-time quantitative PCR (qRT-PCR). Interestingly, H2S pretreatment could specifically induce the downregulation of mhp-miR408a expression, and upregulated mhp-miR477a and mhp-miR827. Moreover, root architecture was improved by regulating the expression of mhp-miR159c and mhp-miR169 and their target genes. These results suggest that the miRNA-mediated regulatory network participates in the process of H2S-mitigated alkaline salt stress in M. hupehensis roots. This study provides a further understanding of miRNA regulation in the H2S mitigation of alkaline salt stress in M. hupehensis roots.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tingting Li ◽  
Yuqi Li ◽  
Zhijuan Sun ◽  
Xiangli Xi ◽  
Guangli Sha ◽  
...  

Applying large amounts of potash fertilizer in apple orchards for high apple quality and yield aggravates KCl stress. As a phytoalexin, resveratrol (Res) participates in plant resistance to biotic stress. However, its role in relation to KCl stress has never been reported. Herein we investigated the role of Res in KCl stress response of Malus hupehensis Rehd., a widely used apple rootstock in China which is sensitive to KCl stress. KCl-stressed apple seedlings showed significant wilting phenotype and decline in photosynthetic rate, and the application of 100 μmol Res alleviated KCl stress and maintained photosynthetic capacity. Exogenous Res can strengthen the activities of peroxidase and catalase, thus eliminating reactive oxygen species production induced by KCl stress. Moreover, exogenous Res can decrease the electrolyte leakage by accumulating proline for osmotic balance under KCl stress. Furthermore, exogenous Res application can affect K+/Na+ homeostasis in cytoplasm by enhancing K+ efflux outside the cells, inhibiting Na+ efflux and K+ absorption, and compartmentalizing K+ into vacuoles through regulating the expression of K+ and Na+ transporter genes. These findings provide a theoretical basis for the application of exogenous Res to relieve the KCl stress of apples.


Sign in / Sign up

Export Citation Format

Share Document