scholarly journals TUDCA-Treated Mesenchymal Stem Cells Protect against ER Stress in the Hippocampus of a Murine Chronic Kidney Disease Model

2019 ◽  
Vol 20 (3) ◽  
pp. 613 ◽  
Author(s):  
Jun Lee ◽  
Yeo Yoon ◽  
Sang Lee

Chronic kidney disease (CKD) leads to the loss of kidney function, as well as the dysfunction of several other organs due to the release of uremic toxins into the system. In a murine CKD model, reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress are increased in the hippocampus. Mesenchymal stem cells (MSCs) are one of the candidates for cell-based therapy for CKD; however severe pathophysiological conditions can decrease their therapeutic potential. To address these issues, we established tauroursodeoxycholic acid (TUDCA)-treated MSCs using MSCs isolated from patients with CKD (CKD-hMSCs) and assessed the survival and ROS generation of neural cell line SH-SY5Y cells by co-culturing with TUDCA-treated CKD-hMSCs. In the presence of the uremic toxin P-cresol, the death of SH-SY5Y cells was induced by ROS-mediated ER stress. Co-culture with TUDCA-treated CKD-hMSCs increased anti-oxidant enzyme activities in SH-SY5Y cells through the upregulation of the cellular prion protein (PrPC) expression. Upregulated PrPC expression in SH-SY5Y cells protected against CKD-mediated ER stress and apoptosis. In an adenine-induced murine CKD model, injection with TUDCA-treated CKD-hMSCs suppressed ROS generation and ER stress in the hippocampus. These results indicate that TUDCA-treated CKD-hMSCs prevent the CKD-mediated cell death of SH-SY5Y cells by inhibiting ER stress. Our study suggests that treatment with TUDCA could be a powerful strategy for developing autologous MSC-based therapeutics for patients with CKD, and that PrPC might be a pivotal target for protecting neural cells from CKD-mediated ER stress.

2019 ◽  
Vol 20 (9) ◽  
pp. 2314 ◽  
Author(s):  
Yeo Min Yoon ◽  
Jun Hee Lee ◽  
Chul Won Yun ◽  
Sang Hun Lee

Mesenchymal stem cells (MSCs) are optimal sources of autologous stem cells for cell-based therapy in chronic kidney disease (CKD). However, CKD-associated pathophysiological conditions, such as endoplasmic reticulum (ER) stress and oxidative stress, decrease MSC function. In this work, we study the protective effect of pioglitazone on MSCs isolated from CKD patients (CKD-MSCs) against CKD-induced ER stress. In CKD-MSCs, ER stress is found to induce mitochondrial reactive oxygen species generation and mitochondrial dysfunction. Treatment with pioglitazone reduces the expression of ER stress markers and mitochondrial fusion proteins. Pioglitazone increases the expression of cellular prion protein (PrPC) in CKD-MSCs, which is dependent on the expression levels of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Treatment with pioglitazone is found to protect CKD-MSCs against reactive oxygen species generation, aberrant mitochondrial oxidative phosphorylation of complexes I and IV, and aberrant proliferation capacity through the PGC-1α-PrPC axis. These results indicate that pioglitazone protects the mitochondria of MSCs from CKD-induced ER stress. Pioglitazone treatment of CKD-MSCs may be a potential therapeutic strategy for CKD patients.


2019 ◽  
Vol 20 (7) ◽  
pp. 1619 ◽  
Author(s):  
Chul Yun ◽  
Sang Lee

Kidney disease can be either acute kidney injury (AKI) or chronic kidney disease (CKD) and it can lead to the development of functional organ failure. Mesenchymal stem cells (MSCs) are derived from a diverse range of human tissues. They are multipotent and have immunomodulatory effects to assist in the recovery from tissue injury and the inhibition of inflammation. Numerous studies have investigated the feasibility, safety, and efficacy of MSC-based therapies for kidney disease. Although the exact mechanism of MSC-based therapy remains uncertain, their therapeutic value in the treatment of a diverse range of kidney diseases has been studied in clinical trials. The use of MSCs is a promising therapeutic strategy for both acute and chronic kidney disease. The mechanism underlying the effects of MSCs on survival rate after transplantation and functional repair of damaged tissue is still ambiguous. The paracrine effects of MSCs on renal recovery, optimization of the microenvironment for cell survival, and control of inflammatory responses are thought to be related to their interaction with the damaged kidney environment. This review discusses recent experimental and clinical findings related to kidney disease, with a focus on the role of MSCs in kidney disease recovery, differentiation, and microenvironment. The therapeutic efficacy and current applications of MSC-based kidney disease therapies are also discussed.


2021 ◽  
Vol 506 (1-2) ◽  
Author(s):  
Nguyen Duy Thang ◽  
Phan Thi Thuy Hoa ◽  
Phan Thi Dieu Ngan ◽  
Ngo Nhat Hoang ◽  
Che Thi Cam Ha

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, which is characterized by systemic multiple-organ involvement, relapses with large amount of autoantibodies. Their pathophysiology is multifaceted, involves complex hormonal-immunological-cellular interactions, and leads to damage in multiple cell types, which is often resistant to conventional therapy. Thus, novel strategies are needed to repair the renal parenchyma and preserve kidney function. Mesenchymal stem cells (MSC) confer renal protection through paracrine/endocrine effects, and to some degree possibly by direct engraftment. The patient was diagnosed with chronic kidney disease by standard methods for more than fifteen years. The patient agreed to the treatment of autologous adipose mesenchymal stem cell transplantation. The adipose mesenchymal stem cells were harvested by surgery, isolated with our enzyme protocol. The patient received one injection with 2,6x106 cells/kg for a total of 43kg of body weight. The patient with SLE do not receive prompt treatment, he get irreversible organ damage. After seven months, the preexisting renal insufficiency gradually ameliorated, including the decrease of creatinine and blood urea as well as the increase of estimated glomerular filtration rate. Lupus symptoms also reduced, followed by the improvement of body movement and medication reduction.There was insufficient evidence of the clinical setting to show the efficiency of mesenchymal stem cells on the lupus nephritis relating to chronic kidney disease.  This clinical trial highlights the feasibility and safety of mesenchymal stem cell treatments in renal failure-associated- autoimmune diseases.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 11
Author(s):  
Marcella Liciani Franco ◽  
Stephany Beyerstedt ◽  
Érika Bevilaqua Rangel

Chronic kidney disease (CKD) and acute kidney injury (AKI) are public health problems, and their prevalence rates have increased with the aging of the population. They are associated with the presence of comorbidities, in particular diabetes mellitus and hypertension, resulting in a high financial burden for the health system. Studies have indicated Klotho as a promising therapeutic approach for these conditions. Klotho reduces inflammation, oxidative stress and fibrosis and counter-regulates the renin-angiotensin-aldosterone system. In CKD and AKI, Klotho expression is downregulated from early stages and correlates with disease progression. Therefore, the restoration of its levels, through exogenous or endogenous pathways, has renoprotective effects. An important strategy for administering Klotho is through mesenchymal stem cells (MSCs). In summary, this review comprises in vitro and in vivo studies on the therapeutic potential of Klotho for the treatment of CKD and AKI through the administration of MSCs.


2019 ◽  
Vol 14 (4) ◽  
pp. 327-336 ◽  
Author(s):  
Carl R. Harrell ◽  
Marina Gazdic ◽  
Crissy Fellabaum ◽  
Nemanja Jovicic ◽  
Valentin Djonov ◽  
...  

Background: Amniotic Fluid Derived Mesenchymal Stem Cells (AF-MSCs) are adult, fibroblast- like, self-renewable, multipotent stem cells. During the last decade, the therapeutic potential of AF-MSCs, based on their huge differentiation capacity and immunomodulatory characteristics, has been extensively explored in animal models of degenerative and inflammatory diseases. Objective: In order to describe molecular mechanisms responsible for the therapeutic effects of AFMSCs, we summarized current knowledge about phenotype, differentiation potential and immunosuppressive properties of AF-MSCs. Methods: An extensive literature review was carried out in March 2018 across several databases (MEDLINE, EMBASE, Google Scholar), from 1990 to present. Keywords used in the selection were: “amniotic fluid derived mesenchymal stem cells”, “cell-therapy”, “degenerative diseases”, “inflammatory diseases”, “regeneration”, “immunosuppression”. Studies that emphasized molecular and cellular mechanisms responsible for AF-MSC-based therapy were analyzed in this review. Results: AF-MSCs have huge differentiation and immunosuppressive potential. AF-MSCs are capable of generating cells of mesodermal origin (chondrocytes, osteocytes and adipocytes), neural cells, hepatocytes, alveolar epithelial cells, insulin-producing cells, cardiomyocytes and germ cells. AF-MSCs, in juxtacrine or paracrine manner, regulate proliferation, activation and effector function of immune cells. Due to their huge differentiation capacity and immunosuppressive characteristic, transplantation of AFMSCs showed beneficent effects in animal models of degenerative and inflammatory diseases of nervous, respiratory, urogenital, cardiovascular and gastrointestinal system. Conclusion: Considering the fact that amniotic fluid is obtained through routine prenatal diagnosis, with minimal invasive procedure and without ethical concerns, AF-MSCs represents a valuable source for cell-based therapy of organ-specific or systemic degenerative and inflammatory diseases.


Author(s):  
Mohamed A Rawash ◽  
Ayman Saber Mohamed ◽  
Emad M El-Zayat

Background: Adipose mesenchymal stem cells (AMSCs) are a type of stem cell employed to repair damaged organs. This study aimed to see how effective AMSCs are at treating gentamycin-induced hepatorenal damage in rats. Methods: 18 male Wister rats were assigned into three groups; control, Gentamycin (GM), and GM+AMSCs. GM induced hepatorenal toxicity through daily injection (100 mg/kg, i.p.) for eight days. On day 9, AMSC (106 cells/ml/rat) was injected intravenously. Results : Creatinine, urea, uric acid, AST, ALP, ALT, TNF-, and MDA levels decreased, whereas IL-10, GSH, and CAT levels increased, indicating the therapeutic potency of intravenous injection AMSCs. Conclusion: The current study demonstrated the simultaneous therapeutic efficacy of adipose mesenchymal stem cells on the liver and kidney in the treatment of Gentamycin-induced hepatotoxicity. These data show that AMSCs could be a feasible therapy option for liver and kidney disease.


2019 ◽  
Vol 10 (03) ◽  
pp. 135-149
Author(s):  
Hideo Hori ◽  
Masanori Shinzato ◽  
Yoshiyuki Hiki ◽  
Shigeru Nakai ◽  
Gen Niimi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document