scholarly journals Cardiovascular Effects of PCB 126 (3,3’,4,4’,5-Pentachlorobiphenyl) in Zebrafish Embryos and Impact of Co-Exposure to Redox Modulating Chemicals

2019 ◽  
Vol 20 (5) ◽  
pp. 1065 ◽  
Author(s):  
Elisabet Teixidó ◽  
Marta Barenys ◽  
Ester Piqué ◽  
Joan Llobet ◽  
Jesús Gómez-Catalán

The developing cardiovascular system of zebrafish is a sensitive target for many environmental pollutants, including dioxin-like compounds and pesticides. Some polychlorinated biphenyls (PCBs) can compromise the cardiovascular endothelial function by activating oxidative stress-sensitive signaling pathways. Therefore, we exposed zebrafish embryos to PCB126 or to several redox-modulating chemicals to study their ability to modulate the dysmorphogenesis produced by PCB126. PCB126 produced a concentration-dependent induction of pericardial edema and circulatory failure, and a concentration-dependent reduction of cardiac output and body length at 80 hours post fertilization (hpf). Among several modulators tested, the effects of PCB126 could be both positively and negatively modulated by different compounds; co-treatment with α-tocopherol (vitamin E liposoluble) prevented the adverse effects of PCB126 in pericardial edema, whereas co-treatment with sodium nitroprusside (a vasodilator compound) significantly worsened PCB126 effects. Gene expression analysis showed an up-regulation of cyp1a, hsp70, and gstp1, indicative of PCB126 interaction with the aryl hydrocarbon receptor (AhR), while the transcription of antioxidant genes (sod1, sod2; cat and gpx1a) was not affected. Further studies are necessary to understand the role of oxidative stress in the developmental toxicity of low concentrations of PCB126 (25 nM). Our results give insights into the use of zebrafish embryos for exploring mechanisms underlying the oxidative potential of environmental pollutants.

2020 ◽  
Vol 58 (1) ◽  
pp. 1294-1301
Author(s):  
Zhongshang Xia ◽  
Erwei Hao ◽  
Zhangmei Chen ◽  
Mingzhe Zhang ◽  
Yanting Wei ◽  
...  

Chemosphere ◽  
2020 ◽  
Vol 246 ◽  
pp. 125727 ◽  
Author(s):  
Zhenzhen Song ◽  
Yun Zhang ◽  
Huazheng Zhang ◽  
R. Samuel Rajendran ◽  
Rongchun Wang ◽  
...  

2016 ◽  
Vol 55 (4) ◽  
pp. 441-450 ◽  
Author(s):  
Miao Hu ◽  
Nan Hu ◽  
Dexin Ding ◽  
Weichao Zhao ◽  
Yongfu Feng ◽  
...  

2018 ◽  
Vol 52 (7) ◽  
pp. 4402-4412 ◽  
Author(s):  
Rui Zhang ◽  
Xiaoxiang Wang ◽  
Xuesheng Zhang ◽  
Chao Song ◽  
Robert J. Letcher ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ting Xu ◽  
Jing Zhao ◽  
Zhifa Xu ◽  
Ruijie Pan ◽  
Daqiang Yin

Abstract Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk.


2018 ◽  
Vol 229 (3) ◽  
Author(s):  
Danping Huang ◽  
Hanmin Li ◽  
Qidi He ◽  
Weiqu Yuan ◽  
Zuanguang Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document