scholarly journals Calcium Homeostasis Is Modified in Skeletal Muscle Fibers of Small Ankyrin1 Knockout Mice

2019 ◽  
Vol 20 (13) ◽  
pp. 3361 ◽  
Author(s):  
Enrico Pierantozzi ◽  
Péter Szentesi ◽  
Dána Al-Gaadi ◽  
Tamás Oláh ◽  
Beatrix Dienes ◽  
...  

Small Ankyrins (sAnk1) are muscle-specific isoforms generated by the Ank1 gene that participate in the organization of the sarcoplasmic reticulum (SR) of striated muscles. Accordingly, the volume of SR tubules localized around the myofibrils is strongly reduced in skeletal muscle fibers of 4- and 10-month-old sAnk1 knockout (KO) mice, while additional structural alterations only develop with aging. To verify whether the lack of sAnk1 also alters intracellular Ca2+ handling, cytosolic Ca2+ levels were analyzed in stimulated skeletal muscle fibers from 4- and 10-month-old sAnk1 KO mice. The SR Ca2+ content was reduced in sAnk1 KO mice regardless of age. The amplitude of the Ca2+ transients induced by depolarizing pulses was decreased in myofibers of sAnk1 KO with respect to wild type (WT) fibers, while their voltage dependence was not affected. Furthermore, analysis of spontaneous Ca2+ release events (sparks) on saponin-permeabilized muscle fibers indicated that the frequency of sparks was significantly lower in fibers from 4-month-old KO mice compared to WT. Furthermore, both the amplitude and spatial spread of sparks were significantly smaller in muscle fibers from both 4- and 10-month-old KO mice compared to WT. These data suggest that the absence of sAnk1 results in an impairment of SR Ca2+ release, likely as a consequence of a decreased Ca2+ store due to the reduction of the SR volume in sAnk1 KO muscle fibers.

2005 ◽  
Vol 22 (2) ◽  
pp. 204-212 ◽  
Author(s):  
M. Thabet ◽  
T. Miki ◽  
S. Seino ◽  
J.-M. Renaud

Although it has been suggested that the ATP-sensitive K+ (KATP) channel protects muscle against function impairment, most studies have so far given little evidence for significant perturbation in the integrity and function of skeletal muscle fibers from inactive mice that lack KATP channel activity in their cell membrane. The objective was, therefore, to test the hypothesis that KATP channel-deficient skeletal muscle fibers become damaged when mice are subjected to stress. Wild-type and KATP channel-deficient mice (Kir6.2−/− mice) were subjected to 4–5 wk of treadmill running at either 20 m/min with 0° inclination or at 24 m/min with 20° uphill inclination. Muscles of all wild-type mice and of nonexercised Kir6.2−/− mice had very few fibers with internal nuclei. After 4–5 wk of treadmill running, there was little evidence for connective tissues and mononucleated cells in Kir6.2−/− hindlimb muscles, whereas the number of fibers with internal nuclei, which appear when damaged fibers are regenerated by satellite cells, was significantly higher in Kir6.2−/− than wild-type mice. Between 5% and 25% of the total number of fibers in Kir6.2−/− extensor digitum longus, plantaris, and tibialis muscles had internal nuclei, and most of such fibers were type IIB fibers. Contrary to hindlimb muscles, diaphragms of Kir6.2−/− mice that had run at 24 m/min had few fibers with internal nuclei, but mild to severe fiber damage was observed. In conclusion, the study provides for the first time evidence 1) that the KATP channels of skeletal muscle are essential to prevent fiber damage, and thus muscle dysfunction; and 2) that the extent of fiber damage is greater and the capacity of fiber regeneration is less in Kir6.2−/− diaphragm muscles compared with hindlimb muscles.


1998 ◽  
Vol 274 (4) ◽  
pp. C940-C946 ◽  
Author(s):  
Christopher D. Balnave ◽  
David G. Allen

The myoplasmic free Ca2+concentration ([Ca2+]i) was measured in intact single fibers from mouse skeletal muscle with the fluorescent Ca2+ indicator indo 1. Some fibers were perfused in a solution in which the concentration of Na+ was reduced from 145.4 to 0.4 mM (low-Na+solution) in an attempt to activate reverse-mode Na+/Ca2+exchange (Ca2+ entry in exchange for Na+ leaving the cell). Under normal resting conditions, application of low-Na+ solution only increased [Ca2+]iby 5.8 ± 1.8 nM from a mean resting [Ca2+]iof 42 nM. In other fibers, [Ca2+]iwas elevated by stimulating sarcoplasmic reticulum (SR) Ca2+ release with caffeine (10 mM) and by inhibiting SR Ca2+ uptake with 2,5-di( tert-butyl)-1,4-benzohydroquinone (TBQ; 0.5 μM) in an attempt to activate forward-mode Na+/Ca2+exchange (Ca2+ removal from the cell in exchange for Na+ influx). These two agents caused a large increase in [Ca2+]i, which then declined to a plateau level approximately twice the baseline [Ca2+]iover 20 min. If the cell was allowed to recover between exposures to caffeine and TBQ in a solution in which Ca2+ had been removed, the increase in [Ca2+]iduring the second exposure was very low, suggesting that Ca2+ had left the cell during the initial exposure. Application of caffeine and TBQ to a preparation in low-Na+ solution produced a large, sustained increase in [Ca2+]iof ∼1 μM. However, when cells were exposed to caffeine and TBQ in a low-Na+ solution in which Ca2+ had been removed, a sustained increase in [Ca2+]iwas not observed, although [Ca2+]iremained higher and declined slower than in normal Na+ solution. This suggests that forward-mode Na+/Ca2+exchange contributed to the fall of [Ca2+]iin normal Na+ solution, but when extracellular Na+ was low, a prolonged elevation of [Ca2+]icould activate reverse-mode Na+/Ca2+exchange. The results provide evidence that skeletal muscle fibers possess a Na+/Ca2+exchange mechanism that becomes active in its forward mode when [Ca2+]iis increased to levels similar to that obtained during contraction.


1986 ◽  
Vol 87 (2) ◽  
pp. 289-303 ◽  
Author(s):  
P Volpe ◽  
G Salviati ◽  
A Chu

The action of ruthenium red (RR) on Ca2+ loading by and Ca2+ release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated. Ca2+ loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method. Ca2+ release was indirectly measured by following tension development evoked by caffeine. Stimulation of the Ca2+ loading rate by 5 microM RR was dependent on free Ca2+, being maximal at pCa 5.56. Isometric force development induced by 5 mM caffeine was reversibly antagonized by RR. IC50 for the rate of tension rise was 0.5 microM; that for the extent of tension was 4 microM. RR slightly shifted the steady state isometric force/pCa curve toward lower pCa values. At 5 microM RR, the pCa required for half-maximal force was 0.2 log units lower than that of the control, and maximal force was depressed by approximately 16%. These results suggest that RR inhibited Ca2+ release from the SR and stimulated Ca2+ loading into the SR by closing Ca2+-gated Ca2+ channels. Previous studies on isolated SR have indicated the selective presence of such channels in junctional terminal cisternae.


1999 ◽  
Vol 91 (1) ◽  
pp. 179-186 ◽  
Author(s):  
Gudrun Kunst ◽  
Bernhard M. Graf ◽  
Rupert Schreiner ◽  
Eike Martin ◽  
Rainer H. A. Fink

Background Although malignant hyperthermia after application of sevoflurane has been reported, little is known about its action on intracellular calcium homeostasis of skeletal muscle. The authors compared the effect of sevoflurane with that of isoflurane and halothane on Ca2+ release of mammalian sarcoplasmic reticulum and applied a novel method to quantify Ca2+ turnover in permeabilized skeletal muscle fibers. Methods Liquid sevoflurane, isoflurane, and halothane at 0.6 mM, 3.5 mM, and 7.6 mm were diluted either in weakly calcium buffered solutions with no added Ca2+ (to monitor Ca2+ release) or in strongly Ca2+ buffered solutions with [Ca2+] values between 3 nM and 24.9 microm for [Ca+]-force relations. Measurements were taken on single saponin skinned muscle fiber preparations of BALB/c mice. Individual [Ca2+]force relations were characterized by the Ca2+ concentration at half-maximal force that indicates the sensitivity of the contractile proteins and by the steepness. Each force transient was transformed directly into a Ca2+ transient with respect to the individual [Ca2+]-force relation of the fiber. Results At 0.6 mM, single force transients induced by sevoflurane were lower compared with equimolar concentrations of isoflurane and halothane (P < 0.05). Similarly, calculated peak Ca2+ transients of sevoflurane were lower than those induced by equimolar halothane (P < 0.05). The Ca2+ concentrations at half maximal force were decreased after the addition of sevoflurane, isoflurane, and halothane in a concentration-dependent manner (P < 0.05). Conclusion Whereas sevoflurane, isoflurane, and halothane similarly increase the Ca2+ sensitivity of the contractile apparatus in skeletal muscle fibers, 0.6 mM sevoflurane induces smaller Ca2+ releases from the sarcoplasmic reticulum than does equimolar halothane.


2012 ◽  
Vol 102 (3) ◽  
pp. 312a
Author(s):  
Michele Scorzeto ◽  
Marta Giacomello ◽  
Luana Toniolo ◽  
Marta Canato ◽  
Cecilia Paolini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document