scholarly journals Cell Death in the Kidney

2019 ◽  
Vol 20 (14) ◽  
pp. 3598 ◽  
Author(s):  
Giovanna Priante ◽  
Lisa Gianesello ◽  
Monica Ceol ◽  
Dorella Del Prete ◽  
Franca Anglani

Apoptotic cell death is usually a response to the cell’s microenvironment. In the kidney, apoptosis contributes to parenchymal cell loss in the course of acute and chronic renal injury, but does not trigger an inflammatory response. What distinguishes necrosis from apoptosis is the rupture of the plasma membrane, so necrotic cell death is accompanied by the release of unprocessed intracellular content, including cellular organelles, which are highly immunogenic proteins. The relative contribution of apoptosis and necrosis to injury varies, depending on the severity of the insult. Regulated cell death may result from immunologically silent apoptosis or from immunogenic necrosis. Recent advances have enhanced the most revolutionary concept of regulated necrosis. Several modalities of regulated necrosis have been described, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial permeability transition-dependent regulated necrosis. We review the different modalities of apoptosis, necrosis, and regulated necrosis in kidney injury, focusing particularly on evidence implicating cell death in ectopic renal calcification. We also review the evidence for the role of cell death in kidney injury, which may pave the way for new therapeutic opportunities.

2021 ◽  
Vol 320 (4) ◽  
pp. F578-F595
Author(s):  
Fei Deng ◽  
Xiaoping Zheng ◽  
Isha Sharma ◽  
Yingbo Dai ◽  
Yinhuai Wang ◽  
...  

Regulated cell death (RCD), distinct from accidental cell death, refers to a process of well-controlled programmed cell death with well-defined pathological mechanisms. In the past few decades, various terms for RCDs were coined, and some of them have been implicated in the pathogenesis of various types of acute kidney injury (AKI). Cisplatin is widely used as a chemotherapeutic drug for a broad spectrum of cancers, but its usage was hampered because of being highly nephrotoxic. Cisplatin-induced AKI is commonly seen clinically, and it also serves as a well-established prototypic model for laboratory investigations relevant to acute nephropathy affecting especially the tubular compartment. Literature reports over a period of three decades have indicated that there are multiple types of RCDs, including apoptosis, necroptosis, pyroptosis, ferroptosis, and mitochondrial permeability transition-mediated necrosis, and some of them are pertinent to the pathogenesis of cisplatin-induced AKI. Interestingly, myo-inositol metabolism, a vital biological process that is largely restricted to the kidney, seems to be relevant to the pathogenesis of certain forms of RCDs. A comprehensive understanding of RCDs in cisplatin-induced AKI and their relevance to myo-inositol homeostasis may yield novel therapeutic targets for the amelioration of cisplatin-related nephropathy.


Nature ◽  
2005 ◽  
Vol 434 (7033) ◽  
pp. 652-658 ◽  
Author(s):  
Takashi Nakagawa ◽  
Shigeomi Shimizu ◽  
Tetsuya Watanabe ◽  
Osamu Yamaguchi ◽  
Kinya Otsu ◽  
...  

2013 ◽  
Vol 24 (12) ◽  
pp. 2058-2071 ◽  
Author(s):  
Gaurav Verma ◽  
Himanshi Bhatia ◽  
Malabika Datta

Elevated interleukin-1β (IL-1β) induces apoptosis in pancreatic β-cells through endoplasmic reticulum (ER) stress induction and subsequent c-jun-N-terminal kinase 1/2 (JNK1/2) activation. In earlier work we showed that JNK1/2 activation is initiated before ER stress and apoptotic induction in response to IL-1β. However, the detailed regulatory mechanisms are not completely understood. Because the ER is the organelle responsible for Ca2+ handling and storage, here we examine the effects of IL-1β on cellular Ca2+ movement and mitochondrial dysfunction and evaluate the role of JNK1/2. Our results show that in RINm5F cells and human primary β-cells, IL-1β alters mitochondrial membrane potential, mitochondrial permeability transition pore opening, ATP content, and reactive oxygen species production and these alterations are preceded by ER Ca2+ release via IP3R channels and mitochondrial Ca2+ uptake. All these events are prevented by JNK1/2 small interfering RNA (siRNA), indicating the mediating role of JNK1/2 in IL-1β–induced cellular alteration. This is accompanied by IL-1β–induced apoptosis, which is prevented by JNK1/2 siRNA and the IP3R inhibitor xestospongin C. This suggests a regulatory role of JNK1/2 in modulating the ER-mitochondrial-Ca2+ axis by IL-1β in apoptotic cell death.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Judith Michels ◽  
Oliver Kepp ◽  
Laura Senovilla ◽  
Delphine Lissa ◽  
Maria Castedo ◽  
...  

The BCL-2 homolog BCL-XL, one of the two protein products ofBCL2L1, has originally been characterized for its prominent prosurvival functions. Similar to BCL-2, BCL-XLbinds to its multidomain proapoptotic counterparts BAX and BAK, hence preventing the formation of lethal pores in the mitochondrial outer membrane, as well as to multiple BH3-only proteins, thus interrupting apical proapoptotic signals. In addition, BCL-XLhas been suggested to exert cytoprotective functions by sequestering a cytosolic pool of the pro-apoptotic transcription factor p53 and by binding to the voltage-dependent anion channel 1 (VDAC1), thereby inhibiting the so-called mitochondrial permeability transition (MPT). Thus, BCL-XLappears to play a prominent role in the regulation of multiple distinct types of cell death, including apoptosis and regulated necrosis. More recently, great attention has been given to the cell death-unrelated functions of BCL-2-like proteins. In particular, BCL-XLhas been shown to modulate a number of pathophysiological processes, including—but not limited to—mitochondrial ATP synthesis, protein acetylation, autophagy and mitosis. In this short review article, we will discuss the functions of BCL-XLat the interface between cell death and metabolism.


2004 ◽  
Vol 24 (9) ◽  
pp. 3918-3927 ◽  
Author(s):  
Mi-Jung Lee ◽  
Jee-Youn Kim ◽  
Kyoungho Suk ◽  
Jae-Hoon Park

ABSTRACT Hypoxia-inducible factor 1α (HIF-1α) controls the cellular responses to hypoxia, activating transcription of a range of genes involved in adaptive processes such as increasing glycolysis and promoting angiogenesis. However, paradoxically, HIF-1α also participates in hypoxic cell death. Several gene products, such as BNip3, RTP801, and Noxa, were identified as HIF-1α-responsive proapoptotic proteins, but the complicated hypoxic cell death pathways could not be completely explained by the few known genes. Moreover, molecules linking the proapoptotic signals of HIF-1α directly to mitochondrial permeability transition are missing. In this work, we report the identification of an HIF-1α-responsive proapoptotic molecule, HGTD-P. Its expression was directly regulated by HIF-1α through a hypoxia-responsive element on the HGTD-P promoter region. When overexpressed, HGTD-P was localized to mitochondria and facilitated apoptotic cell death via typical mitochondrial apoptotic cascades, including permeability transition, cytochrome c release, and caspase 9 activation. In the process of permeability transition induction, the death-inducing domain of HGTD-P physically interacted with the voltage-dependent anion channel. In addition, suppression of HGTD-P expression by small interfering RNA or antisense oligonucleotides protected against hypoxic cell death. Taken together, our data indicate that HGTD-P is a new HIF-1α-responsive proapoptotic molecule that activates mitochondrial apoptotic cascades.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Jason Karch ◽  
Tobias G Schips ◽  
Matthew J Brody ◽  
Onur Kanisicak ◽  
Michelle A Sargent ◽  
...  

In times of energy depletion, a cell will attempt to maintain metabolic homeostasis and viability by degrading and recycling organelles and intracellular components and proteins in a process referred to as autophagy. However, if the energy depletion persists, the cell will be overwhelmed by the autophagic process and will succumb to autophagic cell death. This form of cell death has been implicated in cardiac remodeling during heart failure and damage during ischemic injury. Two proteins that have been previously shown to play a role in virtually every form of regulated cell death, including autophagy, are Bax and Bak. These effectors are responsible for cytochrome-c release during apoptosis and effect mitochondrial permeability transition pore opening during regulated necrosis. Although the expression of either Bax or Bak is required for autophagic cell death to occur, the role of Bax/Bak in this type of cell death is poorly understood, although the lysosome appears to be centrally involved. Here we show that Bax/Bak DKO MEFs subjected to several days of serum starvation contain intact lysosomes compared to WT MEFs. Furthermore, the acidity of the lysosomes in starved DKO MEFs is preserved compared with starved WT MEFs. Bax and Bak are both found in isolated lysosomal preparations and Bax targeted to the lysosome can completely restore autophagic cell death in DKO MEFs. Finally, although Bax oligomerization is required for apoptosis, it is not necessary for autophagic cell death, as DKO MEFs expressing an oligomerization defective mutant of Bax are still susceptible to this form of death, as monomeric Bax can still increase membrane permeability. In conclusion our results suggest that lysosomal membrane permeability through Bax or Bak is required for autophagic cell death to occur and without Bax or Bak the lysosomes remain intact where they can function as an energy source during times of nutrient deprivation.


1999 ◽  
Vol 66 ◽  
pp. 205-222 ◽  
Author(s):  
John J. Lemasters ◽  
Ting Qian ◽  
Lawrence C. Trost ◽  
Brian Herman ◽  
Wayne E. Cascio ◽  
...  

Opening of a high-conductance pore in the mitochondrial inner membrane induces onset of the mitochondrial permeability transition (mPT). Cyclosporin A and trifluoperazine inhibit this pore and block necrotic cell death in oxidative stress, Ca2+ ionophore toxicity, Reye-related drug toxicity, pH-dependent ischaemia/reperfusion injury and other models of cell injury. Confocal fluorescence microscopy directly visualizes the increased mitochondrial membrane permeability of the mPT from the movement of calcein from the cytosol into the matrix space. Pyridine nucleotide oxidation, increased mitochondrial Ca2+ and mitochondrial generation of reactive oxygen species (ROS) all contribute to the onset of the mPT in situ. Confocal microscopy also shows directly that the mPT is a critical link in apoptotic signalling by tumour necrosis factor-alpha at a point downstream of caspase 8 and upstream of caspase 3. Cyclosporin A blocks this mPT, preventing release of pro-apoptotic cytochrome c from mitochondria and subsequent apoptotic cell killing. Progression to necrosis or apoptosis after the mPT depends on the availability of ATP, which blocks necrosis but promotes the apoptotic programme. Given the pathophysiological importance of the mPT, development of agents to modulate the mPT represents an important new goal for pharmaceutical drug discovery.


Sign in / Sign up

Export Citation Format

Share Document