scholarly journals Mast Cells, Stress, Fear and Autism Spectrum Disorder

2019 ◽  
Vol 20 (15) ◽  
pp. 3611 ◽  
Author(s):  
Theoharis C. Theoharides ◽  
Maria Kavalioti ◽  
Irene Tsilioni

Autism Spectrum Disorder (ASD) is a developmental condition characterized by impaired communication and obsessive behavior that affects 1 in 59 children. ASD is expected to affect 1 in about 40 children by 2020, but there is still no distinct pathogenesis or effective treatments. Prenatal stress has been associated with higher risk of developing ASD in the offspring. Moreover, children with ASD cannot handle anxiety and respond disproportionately even to otherwise benign triggers. Stress and environmental stimuli trigger the unique immune cells, mast cells, which could then trigger microglia leading to abnormal synaptic pruning and dysfunctional neuronal connectivity. This process could alter the “fear threshold” in the amygdala and lead to an exaggerated “fight-or-flight” reaction. The combination of corticotropin-releasing hormone (CRH), secreted under stress, together with environmental stimuli could be major contributors to the pathogenesis of ASD. Recognizing these associations and preventing stimulation of mast cells and/or microglia could greatly benefit ASD patients.

Author(s):  
Theoharis C. Theoharides ◽  
Jaanvi Sant ◽  
Maria-Eleni Giota

Autism spectrum disorder (ASD) is a developmental condition characterized by impaired social interactions and communication, as well as by stereotypic movements, that affects 1 in 59 children. ASD is expected to reach 1 in about 40 children by 2020, yet it remains without distinct pathogenesis and effective treatment. Children with ASD respond with high anxiety to almost any unknown stimulus and appear to misread danger/threat signals, and may not experience anxiety in situations where normotypic children do. The authors propose that environmental stimuli stimulate the unique immune cells, known as mast cells (MC), which then trigger microglia, leading to dysfunctional neuronal connectivity in the amygdala. This process lowers or disrupts the “fear response” and leads to an exaggerated “fight-or-flight” reaction. corticotropin-releasing hormone (CRH) could have a synergistic effect with environmental stimuli, especially mycotoxins. Recognizing this association and preventing stimulation of mast cells/microglia could lead to effective treatment of ASD.


2021 ◽  
Vol 6 (18) ◽  
Author(s):  
Soojin Jang

Autism spectrum disorder (ASD) is a complex developmental condition that involves persistent challenges in social interaction, speech and nonverbal communication, and restricted/repetitive behaviors. The effects of ASD and the severity of symptoms are different in each person. Autism differs from person to person in severity and combinations of symptoms. There is a great range of abilities and characteristics of children with autism spectrum disorder — no two children appear or behave the same way. Symptoms can range from mild to severe and often change over time .


2019 ◽  
Author(s):  
Michael C. Granovetter ◽  
Charlie S. Burlingham ◽  
Nicholas M. Blauch ◽  
Nancy J. Minshew ◽  
David J. Heeger ◽  
...  

AbstractAutism spectrum disorder (ASD) is characterized partly by atypical attentional engagement, such as hypersensitivity to environmental stimuli. Attentional engagement is known to be regulated by the locus coeruleus (LC). Moderate baseline LC activity globally dampens neural responsivity and is associated with adaptive deployment and narrowing of attention to task-relevant stimuli. In contrast, increased baseline LC activity enhances neural responsivity across cortex and widening of attention to environmental stimuli regardless of their task relevance. Given attentional atypicalities in ASD, this study is the first to evaluate whether individuals with ASD exhibit a different profile of LC activity compared to typically developing controls under different attentional task demands. Males and females with ASD and age- and gender-matched controls participated in a one-back letter detection test while task-evoked pupillary responses—an established inverse correlate for baseline LC activity—were recorded. Participants completed this task in two conditions, either in the absence or presence of distractor auditory tones. Compared to controls, individuals with ASD evinced atypical pupillary responses in the presence versus absence of distractors. Notably, this atypical pupillary profile was evident despite the fact that both groups exhibited equivalent task performance. Moreover, between-group differences in pupillary responses were observed only in response to task-relevant and not to task-irrelevant stimuli, providing confirmation that the group differences are specifically associated with distinctions in LC activity. These findings suggest that individuals with ASD show atypical modulation of LC activity with changes in attentional demands, offering a possible mechanistic and neurobiological account for attentional atypicalities in ASD.Significance StatementIndividuals with autism spectrum disorder (ASD) exhibit atypical attentional behaviors, such as environmental hypersensitivity and atypical fixedness, but the neural mechanism underlying these behaviors remains elusive. One candidate mechanism is atypical locus coeruleus (LC) activity, as the LC has a critical role in attentional modulation. Elevated LC activity is associated with environmental exploration, while moderate LC activity is associated with focused attention on relevant stimuli. This study shows that, under tightly controlled conditions, task-evoked pupil responses—an LC activity proxy—are lower in individuals with ASD than in controls, but only in the presence of task-irrelevant stimuli. This suggests that individuals with ASD evince atypical modulation of LC activity in accordance with changes in attentional demands, offering a mechanistic account for attentional atypicalities in ASD.


The brain developmental disorder that affects both behavior and communication is autism spectrum disorder (ASD) considered and recognized as a major medical issue affects the increasing population approximately 0.5%– 0.6%. It is a highly heterogeneous neuro-developmental condition that has severe symptoms with various comorbid disorders. Applied Behavior Analysis involves various methods to understand the change in behavior through therapy. The goal is to identify and increase relevant behaviors which can help to diagnose attributes that affect learning. Data mining as the technology handles such medical grounds to predict by analyzing patterns in huge data sets. The outline of the proposed work is to find the relevant attributes from the dataset by normalizing and ranking the attributes. The CFS subset evaluator using various search methods like best first, greedy stepwise and exhaustive search are used to filter relevant feature from the dataset. The ultimate objective of this paper work is to examine the ASD applied behaviors with subject to normalization and ranking. Applying these to the feature selection methods would help for better understanding on various currently wide spread complex medical condition.


2021 ◽  
Vol 11 (9) ◽  
pp. 860
Author(s):  
Theoharis C. Theoharides

The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, “short-circuiting the electrical system” in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells—found in all tissues including the brain—by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop “pruning” nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood–brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.


2020 ◽  
Vol 29 (4) ◽  
pp. 1783-1797
Author(s):  
Kelly L. Coburn ◽  
Diane L. Williams

Purpose Neurodevelopmental processes that begin during gestation and continue throughout childhood typically support language development. Understanding these processes can help us to understand the disruptions to language that occur in neurodevelopmental conditions, such as autism spectrum disorder (ASD). Method For this tutorial, we conducted a focused literature review on typical postnatal brain development and structural and functional magnetic resonance imaging, diffusion tensor imaging, magnetoencephalography, and electroencephalography studies of the neurodevelopmental differences that occur in ASD. We then integrated this knowledge with the literature on evidence-based speech-language intervention practices for autistic children. Results In ASD, structural differences include altered patterns of cortical growth and myelination. Functional differences occur at all brain levels, from lateralization of cortical functions to the rhythmic activations of single neurons. Neuronal oscillations, in particular, could help explain disrupted language development by elucidating the timing differences that contribute to altered functional connectivity, complex information processing, and speech parsing. Findings related to implicit statistical learning, explicit task learning, multisensory integration, and reinforcement in ASD are also discussed. Conclusions Consideration of the neural differences in autistic children provides additional scientific support for current recommended language intervention practices. Recommendations consistent with these neurological findings include the use of short, simple utterances; repetition of syntactic structures using varied vocabulary; pause time; visual supports; and individualized sensory modifications.


Sign in / Sign up

Export Citation Format

Share Document