scholarly journals Application of the Movable Type Free Energy Method to the Caspase-Inhibitor BindingAffinity Study

2019 ◽  
Vol 20 (19) ◽  
pp. 4850
Author(s):  
Xue ◽  
Liu ◽  
Zheng

Many studies have provided evidence suggesting that caspases not only contribute to the neurodegeneration associated with Alzheimer’s disease (AD) but also play essential roles in promoting the underlying pathology of this disease. Studies regarding the caspase inhibition draw researchers’ attention through time due to its therapeutic value in the treatment of AD. In this work, we apply the “Movable Type” (MT) free energy method, a Monte Carlo sampling method extrapolating the binding free energy by simulating the partition functions for both free-state and bound-state protein and ligand configurations, to the caspase-inhibitor binding affinity study. Two test benchmarks are introduced to examine the robustness and sensitivity of the MT method concerning the caspase inhibition complexing. The first benchmark employs a large-scale test set including more than a hundred active inhibitors binding to caspase-3. The second benchmark includes several smaller test sets studying the relative binding free energy differences for minor structural changes at the caspase-inhibitor interaction interfaces. Calculation results show that the RMS errors for all test sets are below 1.5 kcal/mol compared to the experimental binding affinity values, demonstrating good performance in simulating the caspase-inhibitor complexing. For better understanding the protein-ligand interaction mechanism, we then take a closer look at the global minimum binding modes and free-state ligand conformations to study two pairs of caspase-inhibitor complexes with (1) different caspase targets binding to the same inhibitor, and (2) different polypeptide inhibitors targeting the same caspase target. By comparing the contact maps at the binding site of different complexes, we revealed how small structural changes affect the caspase-inhibitor interaction energies. Overall, this work provides a new free energy approach for studying the caspase inhibition, with structural insight revealed for both free-state and bound-state molecular configurations.

2013 ◽  
Vol 110 (16) ◽  
pp. 6358-6363 ◽  
Author(s):  
V. Limongelli ◽  
M. Bonomi ◽  
M. Parrinello

2016 ◽  
Vol 15 (05) ◽  
pp. 1650045 ◽  
Author(s):  
Elham Tazikeh-Lemeski

In this study, we estimated the optimum concentration of copper ions that are effective in the stability and the structural changes of human growth hormone (hGH) protein in the combination of different concentrations of these ions at the molecular level using molecular dynamics simulation by Gromacs 4.6.5 software. Moreover, to estimate the binding affinity of copper ions to hGH protein, binding free energies is calculated by the molecular mechanics Poisson–Boltzmann Surface Area (MM-PBSA). The analysis of molecular dynamics (MD) trajectories as dictionary of the secondary structure of protein (DSSP), solvent accessible surface area (SASA) and binding free energy calculations show that hGH protein structure is more stabilized by increasing a limited concentration of copper ions. These findings align with our previous experimental studies.


Author(s):  
David Huggins

<p>We present an approach to performing alchemical binding free energies which we term coupled topologies. Simultaneously coupling a molecule in the bound state while decoupling it in the unbound state allows us to calculate free energy changes where the system changes charge, without the need to correct for simulation artifacts. This solves a longstanding problem in computing free energy changes. The approach is applied to separated topology relative binding free energy calculations, but is appropriate for single topology calculations and dual topology calculations as well as absolute binding free energy calculations. We apply the method to small-molecule inhibitors of AmpC β-lactamase and show the coupled topologies approach yields results that are in excellent agreement with experiment and good agreement with a state-of-the-art separated topology approach. The promising results on this test case suggest that the coupled topologies approach will be a useful addition to the available arsenal of free-energy methods.</p>


2018 ◽  
Author(s):  
David Huggins

<p>We present an approach to performing alchemical binding free energies which we term coupled topologies. Simultaneously coupling a molecule in the bound state while decoupling it in the unbound state allows us to calculate free energy changes where the system changes charge, without the need to correct for simulation artifacts. This solves a longstanding problem in computing free energy changes. The approach is applied to separated topology relative binding free energy calculations, but is appropriate for single topology calculations and dual topology calculations as well as absolute binding free energy calculations. We apply the method to small-molecule inhibitors of AmpC β-lactamase and show the coupled topologies approach yields results that are in excellent agreement with experiment and good agreement with a state-of-the-art separated topology approach. The promising results on this test case suggest that the coupled topologies approach will be a useful addition to the available arsenal of free-energy methods.</p>


Sign in / Sign up

Export Citation Format

Share Document