scholarly journals Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System

2019 ◽  
Vol 20 (22) ◽  
pp. 5671 ◽  
Author(s):  
Malik ◽  
Willnow

Excitatory amino acid transporters (EAATs) encompass a class of five transporters with distinct expression in neurons and glia of the central nervous system (CNS). EAATs are mainly recognized for their role in uptake of the amino acid glutamate, the major excitatory neurotransmitter. EAATs-mediated clearance of glutamate released by neurons is vital to maintain proper glutamatergic signalling and to prevent toxic accumulation of this amino acid in the extracellular space. In addition, some EAATs also act as chloride channels or mediate the uptake of cysteine, required to produce the reactive oxygen speciesscavenger glutathione. Given their central role in glutamate homeostasis in the brain, as well as their additional activities, it comes as no surprise that EAAT dysfunctions have been implicated in numerous acute or chronic diseases of the CNS, including ischemic stroke and epilepsy, cerebellar ataxias, amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Here we review the studies in cellular and animal models, as well as in humans that highlight the roles of EAATs in the pathogenesis of these devastating disorders. We also discuss the mechanisms regulating EAATs expression and intracellular trafficking and new exciting possibilities to modulate EAATs and to provide neuroprotection in course of pathologies affecting the CNS.

2016 ◽  
Vol 115 (3) ◽  
pp. 1691-1702 ◽  
Author(s):  
Michael P. Matott ◽  
Brian C. Ruyle ◽  
Eileen M. Hasser ◽  
David D. Kline

The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade with dl- threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function.


1999 ◽  
Vol 277 (4) ◽  
pp. F481-F486 ◽  
Author(s):  
W. A. Fairman ◽  
S. G. Amara

Recent studies of glutamate transporters in the central nervous system indicate that in addition to their fundamental role in mediating neurotransmitter uptake, these proteins may contribute to the modulation of a variety of cellular processes. Activation of the excitatory amino acid (EAA) carriers generates an electrogenic current attibutable to ion-coupled cotransport. In addition to this transport-associated current, a substrate-gated thermodynamically uncoupled anion flux has been identified that has been proposed to dampen neuronal excitability. Arachidonic acid has been reported to modulate a variety of membrane proteins involved in cellular signaling. Here we discuss recent findings that indicate arachidonic acid stimulates a previously uncharacterized proton-selective conductance in the Purkinje cell-specific subtype, EAAT4. The unique channel-like porperties of the EAATs, their unexpected localization, and physiological evidence propose a modulatory role for the EAATs in neuronal signaling and suggest a broader role for glutamate transporters than simply the clearance of synaptically released glutamate. Thus, the identification of this arachidonate-stimulated proton conductance extends the complexity of mechanisms through which glutamate transporters modulate neuronal excitability.


2014 ◽  
Vol 65 ◽  
pp. 69-81 ◽  
Author(s):  
Maxime Assous ◽  
Laurence Had-Aissouni ◽  
Paolo Gubellini ◽  
Christophe Melon ◽  
Imane Nafia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document