scholarly journals Improving Phenolic Total Content and Monoterpene in Mentha x piperita by Using Salicylic Acid or Methyl Jasmonate Combined with Rhizobacteria Inoculation

2019 ◽  
Vol 21 (1) ◽  
pp. 50 ◽  
Author(s):  
Lorena del Rosario Cappellari ◽  
Maricel Valeria Santoro ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Erika Banchio

The effects of plant inoculation with plant growth-promoting rhizobacteria (PGPR) and those resulting from the exogenous application of salicylic acid (SA) or methyl jasmonte (MeJA) on total phenolic content (TPC) and monoterpenes in Mentha x piperita plants were investigated. Although the PGPR inoculation response has been studied for many plant species, the combination of PGPR and exogenous phytohormones has not been investigated in aromatic plant species. The exogenous application of SA produced an increase in TPC that, in general, was of a similar level when applied alone as when combined with PGPR. This increase in TPC was correlated with an increase in the activity of the enzyme phenylalanine ammonia lyase (PAL). Also, the application of MeJA at different concentrations in combination with inoculation with PGPR produced an increase in TPC, which was more relevant at 4 mM, with a synergism effect being observed. With respect to the main monoterpene concentrations present in peppermint essential oil (EO), it was observed that SA or MeJA application produced a significant increase similar to that of the combination with rhizobacteria. However, when plants were exposed to 2 mM MeJA and inoculated, an important increase was produced in the concentration on menthol, pulegone, linalool, limonene, and menthone concentrations. Rhizobacteria inoculation, the treatment with SA and MeJA, and the combination of both were found to affect the amount of the main monoterpenes present in the EO of M. piperita. For this reason, the expressions of genes related to the biosynthesis of monoterpene were evaluated, with this expression being positively affected by MeJA application and PGPR inoculation, but was not modified by SA application. Our results demonstrate that MeJA or SA application combined with inoculation with PGPR constitutes an advantageous management practice for improving the production of secondary metabolites from M. piperita.

2019 ◽  
Vol 8 (3) ◽  
pp. 221-228
Author(s):  
Aneela Riaz ◽  
Munazza Rafique ◽  
Muhammad Aftab ◽  
M. Amjad Qureshi ◽  
Hina Javed ◽  
...  

2017 ◽  
Vol 14 (3) ◽  
pp. 1033-1042 ◽  
Author(s):  
Parisa Sharifi

ABSTRACT: The side effects of chemical drugs and the human tendency to make greater use of natural products in order to keep their health as well as problems of modern medical system caused more attention of human to medicinal plants. Hyssop (Hyssopus officinalis) is a plant of the family Lamiaceae and is one of the most important medicinal plants containing essential oils. Despite of the other crops, medicinal plants are the plants that quality of materials compared to their quantity is much more important and necessary. Today using symbiotic microorganisms with plants as the bio-fertilizer for providing nutrients is considered. Among plant growth promoting rhizobacteria, Azospirillum, Pseudomonas and Bacillus can be pointed out. It was observed that using the bio-fertilizer Nitroxin and phosphate solubilizing bacteria on Chamomile increased vegetative yield, seed yield and essential oil yield. In order to study the effect of PGPR, salicylic acid and drought stress on growth indices, the chlorophyll and essential oil of hyssop,a factorial based on a completely randomized design with three replications was conducted at the research greenhouse, Faculty of Agriculture, … University, during 2013- 2014. Treatments were drought stress, salicylic acid and PGPR. Results showed that drought stress reduced the growth and physiologic characteristics and increased essential oil percentand accordingly Hyssop essential oil yield increased. Also, salicylic acid caused the increase in the yield, physiologic and essential oil traits and avoided stress injuries and compensateddecrease in growth traits. Growth promoting bacteria by producing some metabolites such as growth regulators, or types of vitamins as well as improved access to nutrients were directly increase plant growthand development. Among used bacteria, Azospirillum had the greatest impact on improving the measured traits.


2008 ◽  
Vol 98 (4) ◽  
pp. 451-457 ◽  
Author(s):  
B. Ramos Solano ◽  
J. Barriuso Maicas ◽  
M. T. Pereyra de la Iglesia ◽  
J. Domenech ◽  
F. J. Gutiérrez Mañero

A study of plant defensive systemic responses induced by three plant growth promoting rhizobacteria (PGPR) on Arabidopsis thaliana Col 0 against Pseudomonas syringae pv. tomato DC3000 at the biochemical and transcriptional levels is reported in this paper. All three strains decreased disease severity when applied to A. thaliana prior to pathogen inoculation. At the biochemical level, each of the three strains induced ethylene (ET) when incubated with 1-amino-cyclopropane-1-carboxylic acid, and salicylic acid (SA) production in the plant. Plants treated with each of the three strains were also reduced in salicylic acid production after pathogen challenge compared to untreated controls. This effect was more marked in plants treated with Chryseobacterium balustinum AUR9, the strain most effective in decreasing disease severity. The expression level of PR1, a transcriptional marker of the SA-dependent pathway in C. balustinum AUR9-treated plants, is fourfold that of controls while the expression of PDF1.2, a transcriptional marker for the SA-independent pathway, is not induced. C. balustinum cell wall lipopolysaccharides, being putative bacterial elicitor molecules, are able to reproduce this systemic induction effect at low doses. From these observations, we hypothesize that certain PGPR strains are capable of stimulating different systemic responses in host plants. With C. balustinum AUR9, the SA-dependent pathway is stimulated first, as indicated by increases in SA levels and PR1 expression, followed by induction of the SA-independent pathway, as indicated by the increases in ET concentrations. The effects of both pathways combined with respect to disease suppression appear to be additive.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 524 ◽  
Author(s):  
Emad Hafez ◽  
Alaa El Dein Omara ◽  
Alshaymaa Ahmed

Water deficit and soil infertility negatively influence the growth, nutrient uptake, and productivity of wheat. Plant growth promoting rhizobacteria (PGPR) and salicylic acid (SA) were evaluated as possible solutions to mitigate the impacts of water deficit on growth, physiology, productivity, and nutrient uptake of wheat (Triticum aestivum L. cv. Sakha 95). Over two growing seasons (2016/2017 and 2017/2018) field experiments were conducted to examine eight combinations of two water treatments (water deficit and well-watered) with four soil and foliar treatments (control, PGPR, SA, and combination of PGPR + SA). The application of PGPR increased soil microbial activity resulting in increased field capacity and available soil water. Likewise, the application of the combined treatment of PGPR and SA significantly increased chlorophyll content, relative water content, stomatal conductance, soil microbial population, and showed inhibitory impacts on proline content, thus improving yield-related traits, productivity, and nutrient uptake (N, P, K) under water deficit compared to the control treatment. The results show that the integrative use of PGPR in association with SA may achieve an efficacious strategy to attenuate the harmful effects of water deficit as well as the amelioration of productivity and nutrient uptake of wheat under water-deficient conditions.


Sign in / Sign up

Export Citation Format

Share Document