scholarly journals Novel Loss-of-Function Variants in CDC14A are Associated with Recessive Sensorineural Hearing Loss in Iranian and Pakistani Patients

2020 ◽  
Vol 21 (1) ◽  
pp. 311 ◽  
Author(s):  
Julia Doll ◽  
Susanne Kolb ◽  
Linda Schnapp ◽  
Aboulfazl Rad ◽  
Franz Rüschendorf ◽  
...  

CDC14A encodes the Cell Division Cycle 14A protein and has been associated with autosomal recessive non-syndromic hearing loss (DFNB32), as well as hearing impairment and infertile male syndrome (HIIMS) since 2016. To date, only nine variants have been associated in patients whose initial symptoms included moderate-to-profound hearing impairment. Exome analysis of Iranian and Pakistani probands who both showed bilateral, sensorineural hearing loss revealed a novel splice site variant (c.1421+2T>C, p.?) that disrupts the splice donor site and a novel frameshift variant (c.1041dup, p.Ser348Glnfs*2) in the gene CDC14A, respectively. To evaluate the pathogenicity of both loss-of-function variants, we analyzed the effects of both variants on the RNA-level. The splice variant was characterized using a minigene assay. Altered expression levels due to the c.1041dup variant were assessed using RT-qPCR. In summary, cDNA analysis confirmed that the c.1421+2T>C variant activates a cryptic splice site, resulting in a truncated transcript (c.1414_1421del, p.Val472Leufs*20) and the c.1041dup variant results in a defective transcript that is likely degraded by nonsense-mediated mRNA decay. The present study functionally characterizes two variants and provides further confirmatory evidence that CDC14A is associated with a rare form of hereditary hearing loss.

2019 ◽  
pp. 112067211987939
Author(s):  
Fabiana D’Esposito ◽  
Viviana Randazzo ◽  
Gilda Cennamo ◽  
Nicola Centore ◽  
Paolo Enrico Maltese ◽  
...  

Purpose: Usher syndrome (USH) is an autosomal recessive disorder characterized by congenital sensorineural hearing impairment and retinitis pigmentosa. Classification distinguishes three clinical types of which type I (USH1) is the most severe, with vestibular dysfunction as an added feature. To date, 15 genes and 3 loci have been identified with the USH1G gene being an uncommon cause of USH. We describe an atypical USH1G-related phenotype caused by a novel homozygous missense variation in a patient with profound hearing impairment and relatively mild retinitis pigmentosa, but no vestibular dysfunction. Methods: A 26-year-old female patient with profound congenital sensorineural hearing loss, nyctalopia and retinitis pigmentosa was studied. Audiometric, vestibular and ophthalmologic examination was performed. A panel of 13 genes was tested by next-generation sequencing (NGS). Results: While the hearing loss was confirmed to be profound, the vestibular function resulted normal. Although typical retinitis pigmentosa was present, the age at onset was unusually late for USH1 syndrome. A novel homozygous missense variation (c.1187T>A, p.Leu396Gln) in the USH1G gene has been identified as causing the disease in our patient. Conclusions: Genetic and phenotypic heterogeneity are very common in both isolated and syndromic retinal dystrophies and sensorineural hearing loss. Our findings widen the spectrum of USH allelic disorders and strength the concept that variants in genes that are classically known as underlying one specific clinical USH subtype might result in unexpected phenotypes.


2012 ◽  
Vol 22 ◽  
pp. S17 ◽  
Author(s):  
I. Varela-Nieto ◽  
S. Murillo-Cuesta ◽  
L. Rodriguez-de la Rosa ◽  
A. Gonzalez-Rodriguez ◽  
A.M. Valverde

1975 ◽  
Vol 40 (4) ◽  
pp. 427-433 ◽  
Author(s):  
Harvey A. Taub

Recent reports concerning the use of acupuncture as a possible treatment for sensorineural hearing impairment were reviewed and evaluated. It was concluded that acupuncture has no effect upon the hearing ability of individuals with sensorineural losses. Further, it was suggested that subjective feelings of improvement represent a placebo effect resulting from the application of a treatment that patients believe might work and not from acupuncture itself.


Author(s):  
Л.А. Кларов ◽  
К.Ю. Николаева ◽  
В.Г. Пшенникова ◽  
А.М. Чердонова ◽  
Ф.М. Терютин ◽  
...  

Мутации гена SLC26A4 могут приводить как к формированию аутосомно-рецессивной тугоухости 4 типа (DFNB4, OMIM #600791), так и к синдрому Пендреда (PDS, OMIM #274600), при котором нейросенсорная потеря слуха сочетается с дисфункцией щитовидной железы, клинически проявляющейся во второй декаде жизни. Обе формы могут сопровождаться специфическими аномалиями внутреннего уха: IP-I, IP-II (Mondini) и/или EVA. В Якутии аудиологическими, рентгенологическими и молекулярно-генетическими методами обследовано 165 пациентов с врожденным нарушением слуха. При компьютерной томографии пирамиды височных костей у 9 из 165 (5,5%) пациентов были обнаружены аномалии IP-I, IP-II (Mondini) и/или EVA. Методом прямого секвенирования по Сэнгеру у этих 9 пациентов было проведено определение нуклеотидной последовательности гена SLC26A4 (21 экзон). В гене SLC26A4 обнаружено 5 ранее известных вариантов, среди которых 4 варианта относились к миссенс-заменам: c.85G>C p.(Glu29Gln), c.441G>A p.(Met147Ile), c.757A>G p.(Ile253Val), c.2027T>A p.(Leu676Gln) и один вариант затрагивал донорный сайт сплайсинга - c.2089+1G>A (IVS18+1G>A). У 4-х из 9 пациентов патогенные варианты гена SLC26A4 обнаружены в гомозиготном или компаунд-гетерозиготном состоянии. Доля биаллельных мутаций гена SLС26A4 у пациентов с IP-I, IP-II (Mondini) и/или EVA составила 44,4%. Пациенты с биаллельными мутациями гена SLC26A4 имели тяжелые врожденные нарушения слуха (двусторонняя нейросенсорная тугоухость от III степени до глухоты), при этом доминирующим типом аномалий были IP-II (Mondini)+EVA (62,5%), аномалии IP-I не были выявлены ни у одного пациента. По совокупности полученных клинических и молекулярно-генетических данных у трех пациентов форма заболевания классифицирована как аутосомно-рецессивная тугоухость 4 типа (DFNB4), а у одной пациентки с двусторонней аномалией EVA, нейросенсорной тугоухостью III степени и узловым зобом (оперирован) подтвержден синдром Пендреда. Mutations in the SLC26A4 gene can lead to both the formation of autosomal recessive deafness type 4 (DFNB4, OMIM#600791), and to Pendred’s syndrome (PDS, OMIM#274600), in which sensorineural hearing loss is combined with thyroid dysfunction, with both forms can be accompanied by specific anomalies of the inner ear: IP-I, IP-II (Mondini) and/or EVA. Using audiological, radiological and molecular genetics methods, 165 patients with congenital hearing impairment in Yakutia were examined. Computed tomography revealed IP-I, IP-II (Mondini) and/or EVA abnormalities in 9 of 165 (5,5%) patients. Then, using direct Sanger sequencing in these 9 patients, the nucleotide sequence of the coding regions of the SLC26A4 gene (21 exons) was determined. In total, 5 previously known variants were found in the SLC26A4 gene, among which 4 variants were missense substitutions: c.85G>C p.(Glu29Gln), c.441G>A p.(Met147Ile), c.757A>G p.(Ile253Val), c.2027T>A p.(Leu676Gln) and one variant affected the splice donor site - c.2089+1G>A (IVS18+1G>A). In 4 out of 9 patients, pathogenic variants of the SLC26A4 gene were found in a homozygous or compound heterozygous state. The total contribution of biallelic mutations in the SLC26A4 gene among patients with inner ear anomalies was 44,4%. Patients with biallelic SLC26A4-mutations had several to profound bilateral sensorineural hearing loss. In patients with biallelic SLC26A4-mutations, the dominant type of anomaly was IP-II (Mondini)+EVA (62,5%), IP-I anomalies were not detected in any patient. In three patients we were able to confirm the diagnosis of DFNB4, and in one patient, due to the sum of phenotypic features (operated on for nodular goiter, autosomal recessive deafness with EVA), Pendred’s syndrome was diagnosed.


2014 ◽  
Vol 29 (2) ◽  
pp. 37-38
Author(s):  
Ian C. Bickle

This middle-aged gentleman with no previous medical history presented to the local ENT outpatient clinic complaining of right-sided hearing loss.  No history of trauma or previous head and neck surgery was elicited. Following clinical and auditory assessment a right sensorineural hearing loss was confirmed.  A right-sided facial palsy was additionally identified on examination. A MRI of the internal auditory meati was performed (Figure 1a & 1b).  Following radiologist review, MRI and MRA of the brain was undertaken.   DISCUSSION   Auditory impairment is a condition with a legion of potential causes. One of the routine aspects of the assessment process for those with sensorineural hearing loss is MR imaging (MRI) of the internal auditory meati (IAMS).   The vast majority of MRI studies are normal, however one of the more commonly identified pathologies are cerebrovascular abnormalities. The most well recognised is neurovascular conflict of the vestibulocochlear nerve by a vascular loop at the root entry zone (REZ), however a broader range of potential responsible structural abnormalities are known. A wide range of processes for auditory dysfunction have been outlined.1 These include; cerebral ischaemia events, subarachnoid haemorrhage, cerebrovascular malformations and rarely dural arteriovenous fistulas (dAVFs).   Dural AVF's are abnormal vascular communications between the dural venous sinuses and an arter(ies) - most frequently branches of the external carotid artery. Sensorineural hearing impairment is one of the rarer presenting symptoms. The mechanism for hearing impairment is believed to result from either direct vascular compression on the vestibulocochlear nerve from an enlarged aberrant draining vein or from a vascular steal phenomenon (Figures 2a & 2b). An engorged draining vein from the dAVF causing mechanical compression on the nerve is the most well recognized.2 A single prior case has been reported of compression from an intraossesous dAVF of the skull base.3   The arteriovenous fistula may be directed identified (Figure 3) along with the associated signs of enlarged cerebral cortical veins and white matter change of venous hypertension (Figure 4).  


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 360
Author(s):  
Jan Boeckhaus ◽  
Nicola Strenzke ◽  
Celine Storz ◽  
Oliver Gross ◽  
◽  
...  

Most adults with Alport syndrome (AS) suffer from progressive sensorineural hearing loss. However, little is known about the early characteristics of hearing loss in children with AS. As a part of the EARLY PRO-TECT Alport trial, this study was the first clinical trial ever to investigate hearing loss in children with AS over a timespan of up to six years Nine of 51 children (18%) had hearing impairment. Audiograms were divided into three age groups: in the 5–9-year-olds, the 4-pure tone average (4PTA) was 8.9 decibel (dB) (n = 15) in those with normal hearing and 43.8 dB (n = 2, 12%) in those with hearing impairment. Among the 10–13-year-olds, 4PTA was 4.8 dB (healthy, n = 12) and 41.4 dB (hearing impaired, n = 6.33%). For the 14–20-year-olds, the 4PTA was 7.0 dB (healthy; n = 9) and 48.2 dB (hearing impaired, n = 3.25%). On average, hearing thresholds of the hearing impaired group increased, especially at frequencies between 1–3 kHz. In conclusion, 18% of children developed hearing loss, with a maximum hearing loss in the audiograms at 1–3 kHz. The percentage of children with hearing impairment increased from 10% at baseline to 18% at end of trial as did the severity of hearing loss.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Yen-Chi Chen ◽  
Chii-Yuan Huang ◽  
Yen-Ting Lee ◽  
Chia-Hung Wu ◽  
Sheng-Kai Chang ◽  
...  

Abstract Background Glutaric aciduria type 1 (GA-1) is a rare disease connected with speech delay and neurological deficits. However, the audiological and otologic profiles of GA-1 have not yet been fully characterized. To our knowledge, this is the largest study of comprehensive audiological and otologic evaluation in patients with GA-1 to date. Methods Thirteen patients diagnosed with GA-1 between January 1994 and December 2019 with audiological, radiological and genetic manifestations were retrospectively analyzed. Hearing tests were performed in all patients. MRI was performed for radiological evaluation. Results Hearing loss was found in 76.9% (10/13) of GA-1 patients, including slight hearing loss in 46.1% (6/13) of patients, mild hearing loss in 15.4% (2/13) of patients, and moderate hearing loss in 7.7% (1/13) of patients. Normal hearing thresholds were seen in 23% (3/13) of patients. Patients with intensive care unit (ICU) admission history showed significantly worse hearing than those without (29.17 ± 12.47 vs 13.56 ± 3.93 dB HL, 95% CI 2.92–24.70, p = 0.0176). One patient had moderate sensorineural hearing loss and a past history of acute encephalopathic crisis. No usual causative gene mutations associated with hearing loss were found in these patients. MRI showed a normal vestibulocochlear apparatus and cochlear nerve. One patient with extensive injury of the basal ganglia on MRI after acute encephalopathic crisis was found to have moderate sensorineural hearing loss. Two patients with disability scores above 5 were found to have mild to moderate hearing impairment. No obvious correlation between macrocephaly and hearing loss was found. Conclusion A high prevalence of hearing impairment is found in GA-1 patients. Adequate audiological evaluation is essential for these patients, especially for those after encephalopathic crises or with ICU admission history.


Sign in / Sign up

Export Citation Format

Share Document