scholarly journals Insulin Receptor Substrate 2 (IRS2)-Deficient Mice Show Sensorineural Hearing Loss That Is Delayed by Concomitant Protein Tyrosine Phosphatase 1B (PTP1B) Loss of Function

2011 ◽  
Vol 18 (2) ◽  
pp. 260-269 ◽  
Author(s):  
Silvia Murillo-Cuesta ◽  
Guadalupe Camarero ◽  
Águeda González-Rodriguez ◽  
Lourdes Rodríguez-de la Rosa ◽  
Deborah J. Burks ◽  
...  
2012 ◽  
Vol 22 ◽  
pp. S17 ◽  
Author(s):  
I. Varela-Nieto ◽  
S. Murillo-Cuesta ◽  
L. Rodriguez-de la Rosa ◽  
A. Gonzalez-Rodriguez ◽  
A.M. Valverde

2003 ◽  
Vol 284 (1) ◽  
pp. E47-E54 ◽  
Author(s):  
Agus Suryawan ◽  
Teresa A. Davis

The high activity of the insulin-signaling pathway contributes to the enhanced feeding-induced stimulation of translation initiation in skeletal muscle of neonatal pigs. Protein-tyrosine-phosphatase 1B (PTP1B) is a negative regulator of the tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate 1 (IRS-1). The activity of PTP1B is determined mainly by its association with IR and Grb2. We examined the level of PTP1B activity, PTP1B protein abundance, PTP1B tyrosine phosphorylation, and the association of PTP1B with IR and Grb2 in skeletal muscle and liver of fasted and fed 7- and 26-day-old pigs. PTP1B activity in skeletal muscle was lower (P < 0.05) in 7- compared with 26-day-old pigs but in liver was similar in the two age groups. PTP1B abundances were similar in muscle but lower (P < 0.05) in liver of 7- compared with 26-day-old pigs. PTP1B tyrosine phosphorylation in muscle was lower (P < 0.05) in 7- than in 26-day-old pigs. The associations of PTP1B with IR and with Grb2 were lower (P < 0.05) at 7 than at 26 days of age in muscle, but there were no age effects in liver. Finally, in both age groups, fasting did not have any effect on these parameters. These results indicate that basal PTP1B activation is developmentally regulated in skeletal muscle of neonatal pigs, consistent with the developmental changes in the activation of the insulin-signaling pathway reported previously. Reduced PTP1B activation in neonatal muscle likely contributes to the enhanced insulin sensitivity of skeletal muscle in neonatal pigs.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Xia Wu ◽  
Shan Wang ◽  
Sen Chen ◽  
Ying-ying Wen ◽  
Bo Liu ◽  
...  

PTPRQ gene, encoding protein tyrosine phosphatase receptor Q, is essential for the normal maturation and function of hair bundle in the cochlea. Its mutations can cause the defects of stereocilia in hair cell, which lead to nonsyndromic sensorineural hearing loss. Using next-generation sequencing and Sanger sequencing method, we identified a novel compound heterozygous missense mutation, c.4472C>T p.T1491M (maternal allele) and c.1973T>C p.V658A (paternal allele), in PTPRQ gene. The two mutations are the first reported to be the cause of recessively inherited sensorineural hearing loss. Hearing loss levels and progression involved by PTPRQ mutations among the existing cases seem to be varied, and the relationship between genotypes and phenotypes is unclear. Our data here further prove the important role of PTPRQ in auditory function and provide more information for the further mechanism research of PTPRQ-related hearing loss.


1995 ◽  
Vol 270 (49) ◽  
pp. 29189-29193 ◽  
Author(s):  
Alexei Kharitonenkov ◽  
Jürgen Schnekenburger ◽  
Zhengjun Chen ◽  
Pjotr Knyazev ◽  
Suhad Ali ◽  
...  

2000 ◽  
Vol 20 (15) ◽  
pp. 5479-5489 ◽  
Author(s):  
Lori D. Klaman ◽  
Olivier Boss ◽  
Odile D. Peroni ◽  
Jason K. Kim ◽  
Jennifer L. Martino ◽  
...  

ABSTRACT Protein-tyrosine phosphatase 1B (PTP-1B) is a major protein-tyrosine phosphatase that has been implicated in the regulation of insulin action, as well as in other signal transduction pathways. To investigate the role of PTP-1B in vivo, we generated homozygotic PTP-1B-null mice by targeted gene disruption. PTP-1B-deficient mice have remarkably low adiposity and are protected from diet-induced obesity. Decreased adiposity is due to a marked reduction in fat cell mass without a decrease in adipocyte number. Leanness in PTP-1B-deficient mice is accompanied by increased basal metabolic rate and total energy expenditure, without marked alteration of uncoupling protein mRNA expression. In addition, insulin-stimulated whole-body glucose disposal is enhanced significantly in PTP-1B-deficient animals, as shown by hyperinsulinemic-euglycemic clamp studies. Remarkably, increased insulin sensitivity in PTP-1B-deficient mice is tissue specific, as insulin-stimulated glucose uptake is elevated in skeletal muscle, whereas adipose tissue is unaffected. Our results identify PTP-1B as a major regulator of energy balance, insulin sensitivity, and body fat stores in vivo.


Sign in / Sign up

Export Citation Format

Share Document