scholarly journals Synthesis and Cytotoxic Activity Evaluation of New Cu(I) Complexes of Bis(pyrazol-1-yl) Acetate Ligands Functionalized with an NMDA Receptor Antagonist

2020 ◽  
Vol 21 (7) ◽  
pp. 2616 ◽  
Author(s):  
Maura Pellei ◽  
Luca Bagnarelli ◽  
Lorenzo Luciani ◽  
Fabio Del Bello ◽  
Gianfabio Giorgioni ◽  
...  

In the present article, copper(I) complexes of bis(pyrazol-1-yl) carboxylic acid (LH), bis(3,5-dimethylpyrazol-1-yl) carboxylic acid (L2H), and bis(pyrazol-1-yl) acetates conjugated with an N-methyl-d-aspartate (NMDA) receptor antagonist (LNMDA or L2NMDA) and phosphane ligands (triphenylphosphine or 1,3,5-triaza-7-phosphaadamantane) were synthesized. The selection of an NMDA antagonist for the coupling with LH and L2H was suggested by the observation that NMDA receptors are expressed and play a role in different types of cancer models. All the new complexes showed a significant antitumor activity on a panel of human tumor cell lines of different histology, with cisplatin-sensitive, cisplatin-resistant, or multi-drug-resistant phenotype. Their half maximal inhibitory concentration (IC50) values were in the low- and sub-micromolar range and, in general, significantly lower than that of cisplatin. Interestingly, the fact that all the complexes proved to be significantly more active than cisplatin even in three-dimensional (3D) spheroids of H157 and BxPC3 cancer cells increased the relevance of the in vitro results. Finally, morphological analysis revealed that the most representative complex 8 induced a massive swelling of the endoplasmic reticulum (ER) membrane, which is a clear sign of ER stress.

1991 ◽  
Vol 66 (3) ◽  
pp. 986-998 ◽  
Author(s):  
D. G. Rainnie ◽  
E. K. Asprodini ◽  
P. Shinnick-Gallagher

1. Intracellular current-clamp recordings obtained from neurons of the basolateral nucleus of the amygdala (BLA) were used to characterize postsynaptic potentials elicited through stimulation of the stria terminalis (ST) or the lateral amygdala (LA). The contribution of glutamatergic receptor subtypes to excitatory postsynaptic potentials (EPSPs) were analyzed by the use of the non N-methyl-D-aspartate (non-NMDA) antagonist, 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), and the NMDA antagonist, (DL)-2-amino-5-phosphonovaleric acid (APV). 2. Basic membrane properties of BLA neurons determined from membrane responses to transient current injection showed that at the mean resting membrane potential (RMP; -67.2 mV) the input resistance (RN) and time constant for membrane charging (tau) were near maximal, and that both values were reduced with membrane hyperpolarization, suggesting an intrinsic regulation of synaptic efficacy. 3. Responses to stimulation of the ST or LA consisted of an EPSP followed by either a fast inhibitory postsynaptic potential (f-IPSP) only, or by a fast- and subsequent slow-IPSP (s-IPSP). The EPSP was graded in nature, increasing in amplitude with increased stimulus intensity, and with membrane hyperpolarization after DC current injection. Spontaneous EPSPs were also observed either as discrete events or as EPSP/IPSP waveforms. 4. In physiological Mg2+ concentrations (1.2 mM), at the mean RMP, the EPSP consisted of dual, fast and slow, glutamatergic components. The fast-EPSP (f-EPSP) possessed characteristics of kainate/quisqualate receptor activation, namely, the EPSP increased in amplitude with membrane hyperpolarization, was insensitive to the NMDA receptor antagonist, APV (50 microM), and was blocked by the non-NMDA receptor antagonist, CNQX (10 microM). In contrast, the slow-EPSP (s-EPSP) decreased in amplitude with membrane hyperpolarization, was insensitive to CNQX (10 microM), and was blocked by APV (50 microM), indicating mediation by NMDA receptor activation. 5. In the presence of CNQX (10 microM), ST stimulation evoked an APV-sensitive s-EPSP. In contrast, LA stimulation evoked a f-IPSP, which when blocked by subsequent addition of bicuculline methiodide (BMI; 30 microM) revealed a temporally overlapping APV-sensitive s-EPSP. These data suggest that EPSP amplitude and duration are determined, in part, by the shunting of membrane conductance caused by a concomitant IPSP. 6. Superfusion of either CNQX or APV in BLA neurons caused membrane hyperpolarization and blockade of spontaneous EPSPs and IPSPs, suggesting that these compounds may act to block tonic excitatory amino acid (EAA) release within the nucleus, and that a degree of feed-forward inhibition occurs within the nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 135 (2) ◽  
pp. 149-152 ◽  
Author(s):  
Michael L. Vazquez ◽  
Danny J. Garland ◽  
Eric T. Sun ◽  
Julie A. Cler ◽  
Steve J. Mick ◽  
...  

1993 ◽  
Vol 69 (4) ◽  
pp. 1150-1159 ◽  
Author(s):  
A. Colino ◽  
R. C. Malenka

1. The mechanisms underlying the induction of long-term potentiation (LTP) in the medial and lateral perforant paths were studied by recording excitatory postsynaptic potentials (EPSPs) from rat dentate granule cells in vitro using extracellular and whole-cell recording techniques. 2. Paired stimuli (interstimulus interval, 50-1,000 ms) resulted in facilitation of the lateral and depression of the medial perforant path-evoked EPSPs, respectively. This physiological difference was used to isolate responses evoked by stimulation of a single path. 3. Tetanic stimulation induced LTP in both pathways, although the magnitude of LTP in the lateral perforant path was significantly less than that in the medial perforant path. Both forms of LTP were blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV). 4. Buffering intracellular calcium by loading granule cells with the calcium chelator bis (O-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid prevented LTP in both pathways. 5. Pairing of low-frequency (0.25 Hz) afferent stimulation with postsynaptic depolarization induced LTP in the medial but not the lateral perforant path. However, pairing of higher-frequency stimulation (1-4 Hz) with postsynaptic depolarization did potentiate the lateral perforant path-evoked EPSP in some cells. 6. Both the medial and lateral perforant path-evoked EPSPs had two components; a fast component blocked by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione and a slower, voltage-dependent component blocked by D-APV. 7. The results indicate that the induction of LTP in both the medial and lateral perforant paths requires activation of postsynaptic NMDA receptors and a rise in intracellular calcium.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 50 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Gabriele Losi ◽  
Marco Lanza ◽  
Francesco Makovec ◽  
Roberto Artusi ◽  
Gianfranco Caselli ◽  
...  

2006 ◽  
Vol 95 (4) ◽  
pp. 2155-2166 ◽  
Author(s):  
Robert B. Levy ◽  
Alex D. Reyes ◽  
Chiye Aoki

We studied the cholinergic modulation of glutamatergic transmission between neighboring layer 5 regular-spiking pyramidal neurons in somatosensory cortical slices from young rats (P10-P26). Brief bath application of 5–10 μM carbachol, a nonspecific cholinergic agonist, decreased the amplitude of evoked unitary excitatory postsynaptic potentials (EPSPs). This effect was blocked by 1 μM atropine, a muscarinic receptor antagonist. Nicotine (10 μM), in contrast to carbachol, reduced EPSPs in nominally magnesium-free solution but not in the presence of 1 mM Mg+2, indicating the involvement of NMDA receptors. Likewise, when the postsynaptic cell was depolarized under voltage clamp to allow NMDA receptor activation in the presence of 1 mM Mg+2, synaptic currents were reduced by nicotine. Nicotinic EPSP reduction was prevented by the NMDA receptor antagonist d-AP5 (50 μM) and by the nicotinic receptor antagonist mecamylamine (10 μM). Both carbachol and nicotine reduced short-term depression of EPSPs evoked by 10 Hz stimulation, indicating that EPSP reduction happens via reduction of presynaptic glutamate release. In the case of nicotine, several possible mechanisms for NMDAR-dependent EPSP reduction are discussed. As a result of NMDA receptor dependence, nicotinic EPSP reduction may serve to reduce the local spread of cortical excitation during heightened sensory activity.


2006 ◽  
Vol 95 (3) ◽  
pp. 1323-1333 ◽  
Author(s):  
Steven P. Lieske ◽  
Jan-Marino Ramirez

Many neuronal networks are multifunctional, producing different patterns of activity in different circumstances, but the mechanisms responsible for this reconfiguration are in many cases unresolved. The mammalian respiratory network is an example of such a system. Normal respiratory activity (eupnea) is periodically interrupted by distinct large-amplitude inspirations known as sighs. Both rhythms originate from a single multifunctional neural network, and both are preserved in the in vitro transverse medullary slice of mice. Here we show that the generation of fictive sighs were more sensitive than eupnea to reductions of excitatory synapse strength caused by either the P/Q-type (α1A-containing) calcium channel antagonist ω-agatoxin TK or the non- N-methyl-d-aspartate (NMDA) glutamate receptor antagonist 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX). In contrast, the NMDA receptor antagonist MK-801, while also inhibiting eupnea, increased the occurrence of sighs. This suggests that among the glutamatergic synapses subserving eupneic rhythmogenesis, there is a specific subset—highly sensitive to agatoxin and insensitive to NMDA receptor blockade—that is essential for sighs. Blockade of N-type calcium channels with ω-conotoxin GVIA also had pattern-specific effects: eupneic activity was not affected, but sigh frequency was increased and postsigh apnea decreased. We hypothesize that N-type (α1B) calcium channels selectively coupled to calcium-activated potassium channels contribute to the generation of the postsigh apnea.


1991 ◽  
Vol 192 (3) ◽  
pp. 337-342 ◽  
Author(s):  
John Church ◽  
John D. Millar ◽  
Martyn G. Jones ◽  
David Lodge

2005 ◽  
Vol 289 (1) ◽  
pp. R198-R208 ◽  
Author(s):  
Patrick J. Mueller ◽  
C. Michael Foley ◽  
Helen W. Vogl ◽  
Meredith Hay ◽  
Eileen M. Hasser

Previous studies have demonstrated that microinjection of the putative group III metabotropic glutamate receptor (mGluR) agonist, l(+)-2-amino-4-phosphonobutyric acid (l-AP4), into the nucleus tractus solitarius (NTS) produces depressor and sympathoinhibitory responses. These responses are significantly attenuated by a group III mGluR antagonist and may involve ionotropic glutamatergic transmission. Alternatively, a previous report in vitro suggests that preparations of l-AP4 may nonspecifically activate NMDA channels due to glycine contamination (Contractor A, Gereau RW, Green T, and Heinemann SF. Proc Natl Acad Sci USA 95: 8969–8974, 1998). Therefore, the present study tested whether responses to l-AP4 specifically require the N-methyl-d-aspartate (NMDA) receptor and whether they are due to actions at the glycine site on the NMDA channel. To test these possibilities in vivo, we performed unilateral microinjections of l-AP4, glycine, and selective antagonists into the NTS of urethane-anesthetized rats. l-AP4 (10 mM, 30 nl) produced sympathoinhibitory responses that were abolished by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (AP-5, 10 mM) but were unaffected by the non-NMDA antagonist 6-nitro-7-sulfamobenzoquinoxaline-2,3-dione (NBQX, 2 mM). Microinjection of glycine (0.02–20 mM) failed to mimic sympathoinhibitory responses to l-AP4, even in the presence of the inhibitory glycine antagonist, strychnine (3 mM). Strychnine blocked pressor and sympathoexcitatory actions of glycine (20 mM) but failed to reveal a sympathoinhibitory component due to presumed activation of NMDA receptors. The results of these experiments suggest that responses to l-AP4 require NMDA receptors and are independent of non-NMDA receptors. Furthermore, although it is possible that glycine contamination or other nonspecific actions are responsible for the sympathoinhibitory actions of l-AP4, our data and data in the literature argue against this possibility. Thus we conclude that responses to l-AP4 in the NTS are mediated by an interaction between group III mGluRs and NMDA receptors. Finally, we also caution that nonselective actions of l-AP4 should be considered in future studies.


1998 ◽  
Vol 80 (5) ◽  
pp. 2688-2698 ◽  
Author(s):  
John R. McLeod ◽  
Maoxing Shen ◽  
Daniel J. Kim ◽  
Stanley A. Thayer

McLeod, John R., Jr., Maoxing Shen, Daniel J. Kim, and Stanley A. Thayer. Neurotoxicity mediated by aberrant patterns of synaptic activity between rat hippocampal neurons in culture. J. Neurophysiol. 80: 2688–2698, 1998. Reducing the extracellular Mg2+ concentration ([Mg2+]o) to 0.1 mM evoked an aberrant pattern of glutamatergic activity in the synaptic network formed by rat hippocampal neurons grown in primary culture. This treatment resulted in a significant increase in neuronal death when maintained for 20–24 h; 0.1 mM [Mg2+]o elicited a stable and repetitive series of intracellular Ca2+ concentration ([Ca2+]i) spikes as indicated by indo-1-based microfluorimetry. Fura-2-based digital imaging experiments found that the [Ca2+]i spikes were synchronized for all the neurons in a given field. Thus electrophysiological recordings from individual cells were reasonable representations of the field as a whole, enabling correlation of electrical activity to viability. Underlying each [Ca2+]i spike was an intense burst of action potentials. Whole cell voltage-clamp experiments showed that a burst was composed of fast action currents superimposed on a slow inward current. The N-methyl-d-aspartate (NMDA) receptor antagonist CGS19755 (10 μM) blocked [Ca2+]i spiking, the slow inward current, and the cell death induced by low [Mg2+]o. The L-type Ca2+ channel antagonist nimodipine (10 μM) blocked [Ca2+]i spiking, all synaptic activity, and the cell death induced by low [Mg2+]o. The non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM) exerted variable effects on [Ca2+]i spiking and blocked the slow inward current only when the cells were held at a relatively negative holding potential. CNQX did not afford any protection from 0.1 mM [Mg2+]o-induced neurotoxicity. [Ca2+]i imaging experiments showed that CNQX inhibited [Ca2+]i spiking in a subset of neurons within an active network. Thus, the neurons that were insensitive to CNQX appear to be those that were destined to die. We characterized an in vitro model that allowed us to correlate specific electrophysiological components of glutamatergic synaptic activity to the subsequent viability of the network. A slow NMDA receptor-mediated inward current was required to elicit [Ca2+]i spiking and neurotoxicity. Non-NMDA receptors did not contribute to synaptically mediated cell death in this model. An L-type Ca2+ channel antagonist was neuroprotective when used at concentrations that blocked synaptic activity, suggesting that dendritic L-type Ca2+ channels present a useful target for neuroprotective drugs.


Sign in / Sign up

Export Citation Format

Share Document