scholarly journals Oxidation of Erythrocytes Enhance the Production of Reactive Species in the Presence of Artemisinins

2020 ◽  
Vol 21 (13) ◽  
pp. 4799 ◽  
Author(s):  
Ioannis Tsamesidis ◽  
Pierre Pério ◽  
Antonella Pantaleo ◽  
Karine Reybier

In red blood cells, hemoglobin iron represents the most plausible candidate to catalyze artemisinin activation but the limited reactivity of iron bound to hemoglobin does not play in favor for its direct involvement. Denatured hemoglobin appears a more likely candidate for artemisinin redox activation because it is expected to contain reactive iron and it has been described to release free heme and/or iron in erythrocyte. The aim of our study is to investigate, using three different methods: fluorescence, electron paramagnetic resonance and liquid chromatography coupled to mass spectrometry, how increasing the level of accessible iron into the red blood cells can enhance the reactive oxygen species (ROS) production derived from artemisinin. The over-increase of iron was achieved using phenylhydrazine, a strong oxidant that causes oxidative stress within erythrocytes, resulting in oxidation of oxyhemoglobin and leading to the formation of methemoglobin, which is subsequently converted into irreversible hemichromes (iron (III) compounds). Our findings confirmed, using the iron III chelator, desferrioxamine, the indirect participation of iron (III) compounds in the activation process of artemisinins. Furthermore, in strong reducing conditions, the activation of artemisinin and the consequent production of ROS was enhanced. In conclusion, we demonstrate, through the measurement of intra-erythrocytic superoxide and hydrogen peroxide production using various methods, that artemisinin activation can be drastically enhanced by pre-oxidation of erythrocytes.

2006 ◽  
Vol 100 (4) ◽  
pp. 1267-1277 ◽  
Author(s):  
James L. Atkins ◽  
Billy W. Day ◽  
Michael T. Handrigan ◽  
Zhe Zhang ◽  
Motilal B. Pamnani ◽  
...  

The results of previous inhibitor studies suggest that there is some increase in nitric oxide (NO) production from constitutive NO synthase in early hemorrhage (H), but the magnitude of NO production early after H has not been previously assessed. It is generally believed that only modest production rates are possible from the constitutively expressed NO synthases. To study this, anesthetized male Sprague-Dawley rats were subjected to 90 min of isobaric (40 mmHg) H. During this period of time, the dynamics of accumulation of NO intermediates in the arterial blood was assessed using electron paramagnetic resonance spectroscopy, chemiluminescence, fluorescence imaging, and mass spectrometry. Electron paramagnetic resonance-detectable NO adducts were also measured with spin traps in blood plasma and red blood cells. H led to an increase in the concentration of hemoglobin-NO from 0.9 ± 0.2 to 4.8 ± 0.7 μM. This accumulation was attenuated by a nonselective inhibitor of NO synthase, NG-nitro-l-argininemethyl ester (l-NAME), but not by NG-nitro-d-argininemethyl ester (d-NAME) or 1400W. Administration of l-NAME (but not 1400W or d-NAME) during H produced a short-term increase in mean arterial pressure (∼90%). In H, the level of N oxides in red blood cells increased sevenfold. S-nitrosylation of plasma proteins was revealed with “biotin switch” techniques. The results provide compelling evidence that there is brisk production of NO in early H. The results indicate that the initial compensatory response to H is more complicated than previously realized, and it involves an orchestrated balance between intense vasoconstrictor and vasodilatory components.


Transfusion ◽  
2015 ◽  
Vol 55 (12) ◽  
pp. 2967-2978 ◽  
Author(s):  
Joo-Yeun Oh ◽  
Ryan Stapley ◽  
Victoria Harper ◽  
Marisa B. Marques ◽  
Rakesh P. Patel

2021 ◽  
Author(s):  
Sven T. Stripp ◽  
Jonathan Oltmanns ◽  
Christina S. Müller ◽  
David Ehrenberg ◽  
Ramona Schlesinger ◽  
...  

The [4Fe-4S] cluster containing scaffold complex HypCD is the central construction site for the assembly of the [Fe](CN)2CO cofactor precursor of [NiFe]-hydrogenase. While the importance of the HypCD complex is well established, not much is known about the mechanism by which the CN– and CO ligands are transferred and attached to the iron ion. We developed an efficient protocol for the production and isolation of the functional HypCD complex that facilitated detailed spectroscopic investigations. The results obtained by UV/Vis-, electron paramagnetic Resonance (EPR)-, Resonance Raman-, Fourier-transform infrared (FTIR), and Mössbauer spectroscopy provide comprehensive evidence for an electron inventory fit to drive multi-electron redox reactions. We demonstrate the redox activity of the HypCD complex reporting the interconversion of the [4Fe-4S]2+/+ couple. Additionally, we observed a reversible redox conversion between the [4Fe-4S]2+ and a [3Fe-4S]+ cluster. MicroScale thermophoresis indicated preferable binding between the HypCD complex and its interaction partner HypEF under reducing conditions. Together, these results suggest a redox cascade involving the [4Fe-4S] cluster and a conserved disulfide bond of HypD that may facilitate the synthesis of the [Fe](CN)2CO cofactor precursor on the HypCD scaffold complex.


Transfusion ◽  
2019 ◽  
Vol 59 (4) ◽  
pp. 1312-1323
Author(s):  
Man Zhao ◽  
Qianqian Zhou ◽  
Chulin He ◽  
Yulong Zhang ◽  
Zhengjun Wang ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1009-1009 ◽  
Author(s):  
Sara Gardenghi ◽  
Pedro Ramos ◽  
Cindy N. Roy ◽  
Nancy C. Andrews ◽  
Elizabeta Nemeth ◽  
...  

Abstract Abstract 1009 The principal regulator of iron homeostasis, the hepatic peptide hepcidin (Hamp), degrades the iron-transport protein ferroportin (Fpn) localized on absorptive enterocytes, hepatocytes and macrophages. Low Hamp expression has been associated with iron overload in patients and mice affected by β-thalassemia intermedia (th3/+). Our hypothesis is that more iron is absorbed than required for erythropoiesis in β-thalassemia. Therefore, we propose that limiting the dietary iron intake of th3/+ mice either by feeding them a low iron diet or increasing their Hamp expression will have a beneficial effect on iron overload with no effects on erythropoiesis. In particular, since Hamp expression is low in β-thalassemia, a moderate increase of Hamp expression should not interfere with erythropoiesis by preventing release of iron from macrophages. However, we predict that very high levels of Hamp expression will limit the recycling of iron from macrophages, thereby exacerbating the anemia. We first analyzed wt and th3/+ mice fed diets containing a physiological amount of iron (35 ppm) or low iron (2.5 ppm) for 1 and 5 months. These mice were then compared to wt and th3/+ mice expressing a transgenic Hamp (THamp and THamp/th3, respectively). In wt mice, the low-iron diet decreased tissue iron levels leading to anemia (Hb: 14.6±0.7 g/dL and 8.6±2.4 g/dL at 1 and 5 months, respectively). In th3/+ mice fed the low-iron diet, the amount of iron in the liver and spleen decreased over time and after 5 months was 10 times lower than at the beginning of treatment. However, in this case the low-iron diet did not worsen the anemia, (Hb: 8.2±1.3 g/dL vs. 7.8±1.8 g/dL at 1 and 5 months, respectively). In the case of THamp and THamp/th3 mice, we stratified those animals whose transgenic Hamp expression was moderate (2-4 higher) or high (>4 times higher) compared to the endogenous Hamp expression in control mice. In THamp animals expressing a moderate level of Hamp, the total iron content of the liver was decreased (65±21 μg vs. 131±31 μg in wt controls) while no significant changes were detected in the spleen. THamp mice also exhibited anemia (Hb: 11.2±1.8 g/dL vs. 13.9±1.1 g/dL at 1 month). The iron content of the liver and spleen was reduced in THamp/th3 (127±86 μg vs. 234±49 μg and 131±88 μg vs. 271±74 μg, respectively, compared to th3/+ controls), while their hematological values were dramatically improved. Splenomegaly was also significantly reduced. Similar findings were observed at 5 months. Looking at animals expressing high levels of transgenic Hamp, both THamp and THamp/th3 mice exhibited vast accumulations of iron in macrophages, profound anemia, reticulocytosis and increased splenomegaly, confirming that high levels of Hamp block iron recycling and are detrimental to erythropoiesis. Interestingly, in THamp/th3 mice expressing a moderate level of Hamp we observed that the increase in hemoglobin levels was associated with increased red cell numbers but reduced mean corpuscular hemoglobin levels. Paradoxically, this could indicate that reduction of the anemia in THamp/th3 mice is mediated by decreased heme synthesis. α-Globin/heme aggregates lead to ineffective erythropoiesis and a limited red cell life span by producing reactive oxygen species and altering the structure of red cell membranes. Compared to th3/+ mice, THamp/th3 mice exhibited reduced heme contents, insoluble membrane-bound α-globins and reactive oxygen species resulting in an increased life span and more normal morphology of their red blood cells. While the number of red blood cells was increased, the number of reticulocytes, and the total number of erythroid precursors in the spleen were reduced. This was associated with a reduction in reactive oxygen species. Cell cycle analysis of the erythroid cells at different stages of differentiation, expression of heme related proteins and synthesis of α- and β-globin chains in THamp/th3 mice is in progress. Overall, this study indicates that use of hepcidin might be effective in reducing iron overload and improving erythropoiesis in β-thalassemia thereby limiting toxicity due to heme not incorporated into the adult hemoglobin tetramer. In conclusion, we believe this study provides the first evidence that hepcidin could be utilized for the treatment of abnormal iron absorption in β-thalassemia and other related disorders, with additional beneficial effects on ineffective erythropoiesis, splenomegaly and anemia. Disclosures: Nemeth: Intrinsic Life Sciences: Employment, Membership on an entity's Board of Directors or advisory committees.


2006 ◽  
Vol 3 (3) ◽  
pp. 233 ◽  
Author(s):  
Athanasios Valavanidis ◽  
Konstantinos Fiotakis ◽  
Thomais Vlahogianni ◽  
Vasilios Papadimitriou ◽  
Vayia Pantikaki

Environmental Context.�Fine and coarse airborne particulate matter (PM) has been linked to increases in respiratory diseases and lung cancer. PM contains a variety of compounds, such as metals, polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, and quinones adsorbed in a carbonaceous polymeric matrix. Although quinones are found in small amounts in PM, they are capable of redox cycling and in the presence of oxygen catalyse the generation of reactive oxygen species (ROS) in biological systems. ROS are responsible for the induction of oxidative stress, especially oxidative damage to cellular proteins and DNA. This paper investigated quantitatively selected quinones and hydroquinones by high performance liquid chromatography in various airborne PM samples. Also, we investigated the presence of persistent semiquinone radicals in solid samples and quinoid radicals in aqueous extracts of alkaline solution by electron paramagnetic resonance spectroscopy. Abstract.�In recent years, there has been an increasing interest in the study of the health effects of respirable particulate matter (PM) because of its deposition in the human lungs and adverse health effects. Analysis of PM content focused on substances of toxicological importance, such as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, aliphatic hydrocarbons, alkyl-substituted benzenes and naphthalenes, transition metals and various quinones. Recent studies shifted their attention to quinones and their toxicological role in PM. Quinones can be transformed into their semiquinones, which undergo redox cycling and reduce oxygen to produce reactive oxygen species (ROS) in biological systems, resulting in the induction of oxidative stress, especially oxidative damage to cellular components and DNA. In the present study, the presence of five quinones, 1,2-benzenediol (catechol) and 1,4-benzenediol (hydroquinone) in various PM samples was identified and measured quantitatively by high performance liquid chromatography. Mean concentrations of individual target quinones ranged from 15-140 ng mg-1 in diesel and gasoline exhaust particles to 1.5-60 ng mg-1 (or 150-1100 pg m-3) in airborne PM (total suspended particulates, PM aerodynamic diameter 10 μm, PM aerodynamic diameter 2.1 μm) samples. Precision (repeatability and reproducibility) varied from 5 to 15%. Also, examples of electron paramagnetic resonance spectra for the single broad unstructured signal are presented, corresponding to the persistent stable semiquinone radicals of solid samples of PM, and the formation of quinoid radicals in aqueous extracts of PM samples in air-saturated carbonate-buffered solution, pH 9.5-10.


Sign in / Sign up

Export Citation Format

Share Document