scholarly journals Isolation of Antimicrobial Genes from Oryza rufipogon Griff by Using a Bacillus subtilis Expression System with Potential Antimicrobial Activities

2020 ◽  
Vol 21 (22) ◽  
pp. 8722
Author(s):  
Jiale Li ◽  
Samiul Islam ◽  
Pengfei Guo ◽  
Xiaoqing Hu ◽  
Wubei Dong

Antimicrobial genes are distributed in all forms of life and provide a primary defensive shield due to their unique broad-spectrum resistance activities. To better isolate these genes, we used the Bacillus subtilis expression system as the host cells to build Oryza rufipogon Griff cDNA libraries and screen potential candidate genes from the library at higher flux using built-in indicator bacteria. We observed that the antimicrobial peptides OrR214 and OrR935 have strong antimicrobial activity against a variety of Gram-positive and Gram-negative bacteria, as well as several fungal pathogens. Owing to their high thermal and enzymatic stabilities, these two peptides can also be used as field biocontrol agents. Furthermore, we also found that the peptide OrR214 (MIC 7.7–10.7 μM) can strongly inhibit bacterial growth compared to polymyxin B (MIC 5–25 μM) and OrR935 (MIC 33–44 μM). The cell flow analysis, reactive oxygen burst, and electron microscopy (scanning and transmission electron microscopy) observations showed that the cell membranes were targeted by peptides OrR214 and OrR935, which revealed the mode of action of bacteriostasis. Moreover, the hemolytic activity, toxicity, and salt sensitivity experiments demonstrated that these two peptides might have the potential to be used for clinical applications. Overall, OrR214 and OrR935 antimicrobial peptides have a high-throughput bacteriostatic activity that acts as a new form of antimicrobial agent and can be used as a raw material in the field of drug development.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xi Kong ◽  
Mei Yang ◽  
Hafiz Muhammad Khalid Abbas ◽  
Jia Wu ◽  
Mengge Li ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 30 ◽  
Author(s):  
Jia Wu ◽  
Hafiz Muhammad Khalid Abbas ◽  
Jiale Li ◽  
Yuan Yuan ◽  
Yunjun Liu ◽  
...  

The situation of drug resistance has become more complicated due to the scarcity of plant resistance genes, and overcoming this challenge is imperative. Isatis indigotica has been used for the treatment of wounds, viral infections, and inflammation for centuries. Antimicrobial peptides (AMPs) are found in all classes of life ranging from prokaryotes to eukaryotes. To identify AMPs, I. indigotica was explored using a novel, sensitive, and high-throughput Bacillus subtilis screening system. We found that IiR515 and IiR915 exhibited significant antimicrobial activities against a variety of bacterial (Xanthomonas oryzae, Ralstonia solanacearum, Clavibacter michiganensis, and C. fangii) and fungal (Phytophthora capsici and Botrytis cinerea) pathogens. Scanning electron microscope and cytometric analysis revealed the possible mechanism of these peptides, which was to target and disrupt the bacterial cell membrane. This model was also supported by membrane fluidity and electrical potential analyses. Hemolytic activity assays revealed that these peptides may act as a potential source for clinical medicine development. In conclusion, the plant-derived novel AMPs IiR515 and IiR915 are effective biocontrol agents and can be used as raw materials in the drug discovery field.


2013 ◽  
Vol 64 (2) ◽  
pp. 879-882 ◽  
Author(s):  
Reza Panahi ◽  
Ebrahim Vasheghani-Farahani ◽  
Seyed Abbas Shojaosadati ◽  
Bijan Bambai

2010 ◽  
Vol 9 (1) ◽  
pp. 55 ◽  
Author(s):  
Yang M Ming ◽  
Zhang W Wei ◽  
Chen Y Lin ◽  
Gong Y Sheng

Microbiology ◽  
2000 ◽  
Vol 146 (10) ◽  
pp. 2583-2594 ◽  
Author(s):  
Christina L. Jensen ◽  
Keith Stephenson ◽  
Steen T. Jørgensen ◽  
Colin Harwood

Author(s):  
Dwight Anderson ◽  
Charlene Peterson ◽  
Gursaran Notani ◽  
Bernard Reilly

The protein product of cistron 3 of Bacillus subtilis bacteriophage Ø29 is essential for viral DNA synthesis and is covalently bound to the 5’-termini of the Ø29 DNA. When the DNA-protein complex is cleaved with a restriction endonuclease, the protein is bound to the two terminal fragments. The 28,000 dalton protein can be visualized by electron microscopy as a small dot and often is seen only when two ends are in apposition as in multimers or in glutaraldehyde-fixed aggregates. We sought to improve the visibility of these small proteins by use of antibody labeling.


Sign in / Sign up

Export Citation Format

Share Document