scholarly journals Effects of Helioxanthin Derivative-Treated Human Dental Pulp Stem Cells on Fracture Healing

2020 ◽  
Vol 21 (23) ◽  
pp. 9158
Author(s):  
Daiki Yamakawa ◽  
Yoko Kawase-Koga ◽  
Yasuyuki Fujii ◽  
Yuki Kanno ◽  
Marika Sato ◽  
...  

Bone defects affect patients functionally and psychologically and can decrease quality of life. To resolve these problems, a simple and efficient method of bone regeneration is required. Human dental pulp stem cells (DPSCs) have high proliferative ability and multilineage differentiation potential. In our previous study, we reported a highly efficient method to induce osteogenic differentiation using DPSC sheets treated with a helioxanthin derivative (4-(4-methoxyphenyl)pyrido[40,30:4,5]thieno[2,3-b]pyridine-2-carboxamide (TH)) in a mouse calvarial defect model. However, the localization of the DPSCs after transplantation remains unknown. Therefore, in this study, we investigated the localization of transplanted DPSCs in a mouse fracture model. DPSCs were collected from six healthy patients aged 18–29 years, cultured in normal medium (NM), osteogenic medium (OM), or OM with TH, and fabricated them into cell sheets. To evaluate the efficacy of fracture healing using DPSCs treated with OM+TH, and to clarify the localization of the transplanted DPSC sheets in vivo, we transplanted OM+TH-treated DPSC sheets labeled with PKH26 into mouse tibiae fractures. We demonstrated that transplanted OM+TH-treated DPSCs sheets were localized to the fracture site and facilitated bone formation. These results indicated that transplanted OM+TH-treated DPSCs were localized at fracture sites and directly promoted fracture healing.

2019 ◽  
Vol 52 (6) ◽  
Author(s):  
Alessio Zordani ◽  
Alessandra Pisciotta ◽  
Laura Bertoni ◽  
Giulia Bertani ◽  
Antonio Vallarola ◽  
...  

2008 ◽  
Vol 2 (2-3) ◽  
pp. 117-125 ◽  
Author(s):  
Weibo Zhang ◽  
X. Frank Walboomers ◽  
Toin H. Van Kuppevelt ◽  
Willeke F. Daamen ◽  
Philippe A. Van Damme ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Liang Ma ◽  
Ming-wei Li ◽  
Yu Bai ◽  
Hui-hui Guo ◽  
Sheng-chao Wang ◽  
...  

Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we investigate the effects of fluorescent superparamagnetic iron oxide particles (SPIO) (Molday ION Rhodamine-B™, MIRB) on biological properties of human dental pulp stem cells (hDPSCs) and monitor hDPSCs in vitro and in vivo using magnetic resonance imaging (MRI). Morphological analysis showed that intracellular MIRB particles were distributed in the cytoplasm surrounding the nuclei of hDPSCs. 12.5–100 μg/mL MIRB all resulted in 100% labeling efficiency. MTT showed that 12.5–50 μg/mL MIRB could promote cell proliferation and MIRB over 100 μg/mL exhibited toxic effect on hDPSCs. In vitro MRI showed that 1 × 106cells labeled with various concentrations of MIRB (12.5–100 μg/mL) could be visualized. In vivo MRI showed that transplanted cells could be clearly visualized up to 60 days after transplantation. These results suggest that 12.5–50 μg/mL MIRB is a safe range for labeling hDPSCs. MIRB labeled hDPSCs cell can be visualized by MRI in vitro and in vivo. These data demonstrate that MIRB is a promising candidate for hDPSCs tracking in hDPSCs based dental pulp regeneration therapy.


2018 ◽  
Vol 93 ◽  
pp. 74-79 ◽  
Author(s):  
Maziar Ebrahimi Dastgurdi ◽  
Fatemeh Ejeian ◽  
Marzie Nematollahi ◽  
Ahmad Motaghi ◽  
Mohammad Hossein Nasr-Esfahani

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 620 ◽  
Author(s):  
Jae Hwa Ahn ◽  
In-Ryoung Kim ◽  
Yeon Kim ◽  
Dong-Hyun Kim ◽  
Soo-Byung Park ◽  
...  

The purpose of this study was to investigate the effects of mesoporous bioactive glass nanoparticle (MBN)/graphene oxide (GO) composites on the mineralization ability and differentiation potential of human dental pulp stem cells (hDPSCs). MBN/GO composites were synthesized using the sol-gel method and colloidal processing to enhance the bioactivity and mechanical properties of MBN. Characterization using FESEM, XRD, FTIR, and Raman spectrometry showed that the composites were successfully synthesized. hDPSCs were then cultured directly on the MBN/GO (40:1 and 20:1) composites in vitro. MBN/GO promoted the proliferation and alkaline phosphatase (ALP) activity of hDPSCs. In addition, qRT-PCR showed that MBN/GO regulated the mRNA levels of odontogenic markers (dentin sialophosphoprotein (DSPP), dentine matrix protein 1 (DMP-1), ALP, matrix extracellular phosphoglycoprotein (MEPE), bone morphogenetic protein 2 (BMP-2), and runt-related transcription factor 2 (RUNX-2)). The mRNA levels of DSPP and DMP-1, two odontogenesis-specific markers, were considerably upregulated in hDPSCs in response to growth on the MBN/GO composites. Western blot analysis revealed similar results. Alizarin red S staining was subsequently performed to further investigate MBN/GO-induced mineralization of hDPSCs. It was revealed that MBN/GO composites promote odontogenic differentiation via the Wnt/β-catenin signaling pathway. Collectively, the results of the present study suggest that MBN/GO composites may promote the differentiation of hDPSCs into odontoblast-like cells, and potentially induce dentin formation.


2009 ◽  
Vol 35 (3) ◽  
pp. 367-372 ◽  
Author(s):  
Yosuke Okamoto ◽  
Wataru Sonoyama ◽  
Mitsuaki Ono ◽  
Kentaro Akiyama ◽  
Takuo Fujisawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document