scholarly journals Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery

2020 ◽  
Vol 22 (1) ◽  
pp. 44
Author(s):  
Marc Micó-Carnero ◽  
Carlos Rojano-Alfonso ◽  
Ana Isabel Álvarez-Mercado ◽  
Jordi Gracia-Sancho ◽  
Araní Casillas-Ramírez ◽  
...  

Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut–liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.

Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
zhu li ◽  
Matthew J Hampton ◽  
Matthew B Barajas ◽  
Matthias L Riess

Reperfusion restores blood flow after myocardial ischemia but can cause additional cellular injury by the sudden reintroduction of oxygen and nutrients. There is still no effective remedy for myocardial ischemia/reperfusion (IR) injury. Our previous study using cardiomyocytes (CMs) found that, after 3 hrs hypoxia followed by 2 hrs reoxygenation, viability decreased, and release of lactate dehydrogenase (LDH), calcium influx, membrane leakage (insertion of fluorescent probe FM1-43) significantly increased, indicating that cell membrane function was negatively affected. This was attenuated by the triblock copolymer Poloxamer (P)188. Here, we first hypothesized that endothelial cells are also susceptible to simulated IR injury, albeit requiring longer hypoxia times. We further hypothesized that P188 can also attenuate simulated IR injury in endothelial cells when given upon reoxygenation. Mouse coronary artery endothelial cells (MCAECs) were exposed to different durations of hypoxia (2, 3, 12 and 24 hrs) in serum- and glucose-free media +/- reoxygenation for 2 hrs in regular media. P188 was administered upon reoxygenation at 0, 100, 300 or 1,000 μM in experiments of 24 hrs hypoxia / 2 hrs reoxygenation. LDH release was measured and compared to appropriately timed normoxic control experiments. Reoxygenation and hypoxia times significantly longer than 3 hrs were required to elicit sufficient injury (panel A). When P188 was given upon reoxygenation after 24 hrs hypoxia, it dose-dependently attenuated LDH release (panel B). These findings contrast to the higher susceptibility of CMs to IR injury that only allowed shorter hypoxia durations. They also confirm a protective effect of P188 on the endothelium, not just on CMs. These findings have important implications for co-culture models with MCAECs and CMs to elucidate the interplay of both cell types on each other when studying mechanisms of cardioprotective strategies and compounds like P188.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Ryan A Frieler ◽  
Yutein Chung ◽  
Jianrui Song ◽  
Thomas M Vigil ◽  
Richard M Mortensen

Background: Neutrophils respond rapidly to cerebral ischemia and are thought to contribute to inflammation-mediated injury during stroke. Neutralizing antibodies and inhibition of neutrophil chemotactic molecules can be protective during models of stroke, but many of these techniques have the potential to result in cross-reactivity and non-specificity with other immune cell types. Using myeloid Mcl1 knockout mice as a model of genetic neutrophil deficiency, we investigated the contribution of neutrophils to stroke pathophysiology. Methods: Myeloid Mcl1 knockout mice were subjected to transient 90-min middle cerebral artery occlusion and infarct size was assessed by MRI after 24 hours reperfusion. Immune cell mobilization and infiltration was assessed by flow cytometry after 24 hours reperfusion. Results: We found that myeloid Mcl1 knockout mice had significantly reduced infarct size when compared to heterozygous and wild type control mice (MyMcl1 +/+ : 78.0 mm 3 ; MyMcl1 +/- : 83.4 mm 3 ; MyMcl1 -/- : 55.1 mm 3 ). This was accompanied by a nearly complete absence of neutrophils in the ischemic hemisphere of myeloid Mcl1 knockout mice. Although myeloid Mcl1 knockout mice were protected from cerebral infarction, no significant differences in the expression of inflammatory genes were detected. Inhibition of neutrophil chemotaxis using CXCR2 pepducin treatment partially reduced neutrophil mobilization and recruitment to the brain after stroke, but did not reduce infarct size 24 hours after transient MCA occlusion. Conclusions: These data confirm that neutrophils have an important role in infarct development during stroke pathophysiology and suggest that complete deficiency, but not partial inhibition, is necessary to prevent neutrophil-mediated injury during stroke.


2014 ◽  
Vol 59 (No. 11) ◽  
pp. 515-526 ◽  
Author(s):  
M. Drazek ◽  
M. Lew ◽  
S. Lew ◽  
A. Pomianowski

Electroretinography (ERG) in the form of full-field, flash ERG is the most commonly used technique in veterinary ophthalmology for diagnosing the functioning of the outer retina. Under light stimulation spatially distributed different cell types within the retina produce time-varying electric responses. These are recorded in the form of ERG traces consisting of a series of positive and negative wavelets. The possibility of selective stimulation of individual types of retinal cells and the analysis of constituent components of ERGs are the basis for determining the source of abnormalities and diagnosis of various types of dysfunction. In many cases, the ERG allows diagnosis of hereditary retinal disorders in dogs before the appearance of behavioural and ophthalmoscopic symptoms. This review is an introduction to the electrophysiology of vision, intended for small animal practitioners, and aimed at presenting the benefits of ERG for early ophthalmic diagnostics in dogs.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-24-SCI-24
Author(s):  
Mark J. Miller

Abstract Cell-mediated immune responses are highly dependent on environmental context, thus making in vivo studies an important complement to in vitro and molecular approaches. Two-photon microscopy (2PM) is a fluorescence based imaging approach that allows single-cell dynamics to be studied directly in their 3D native tissue context. 2PM is an ideal approach for analyzing leukocyte trafficking dynamics quantitatively and testing cellular immune mechanisms in vivo. Several example applications will be presented where 2PM has uncovered novel immunological phenomena and provided fresh insight into immune responses to infection, autoimmunity and cancer. While 2P imaging has been used extensively to study immune cell trafficking and function in mice, progress is being made to use this imaging technique on clinical biopsy specimens to acquire a multi-dimensional picture of human tissue pathology. We used in vivo 2PM in pre-clinical models of arthritis and bacterial infection to compare and contrast the role of monocytes on neutrophil recruitment. The rapid recruitment of neutrophils and monocytes is critical to early host immune responses to bacterial infection. However, leukocyte recruitment also contributes to chronic inflammatory diseases such as human rheumatoid arthritis. Understanding how cell recruitment is regulated in different inflammatory contexts is crucial for developing safe and effective anti-inflammatory therapies. We found that monocyte depletion with clodronate-liposomes prevented arthritis development in a modified K/BxN serum transfer arthritis model. This protective effect was associated with significantly reduced neutrophil transendothelial migration efficiency. Furthermore, single-cell tracking of a minor population of extravasated neutrophils showed that neutrophil migration and chemotaxis in interstitial tissues was disrupted, contributing to decreased cell localization at phalangeal joints. Similar results were obtained when CCR2+ monocytes were depleted selectively using the monoclonal antibody MC-21, thus implicating CCR2+ monocytes as key regulators of neutrophil extravasation during arthritis initiation. In contrast, neutrophil recruitment to subcutaneous bacterial challenge remained intact and neutrophil extravasation and chemotaxis to sites of infection was not significantly different as compared to non-depleted controls. We also examined whether neutrophil extravasation during acute pulmonary inflammation required monocytes. Neutrophil recruitment in vivo was assessed in a mouse lung transplant-mediated ischemia reperfusion injury model. Similar to the results in the arthritis model, neutrophil recruitment in response to ischemia reperfusion injury was also monocyte dependent. In addition, Ccr2 knockout recipient mice were protected for ischemia reperfusion injury. Results from these complementary mouse models implicate CCR2+ monocytes as key regulators of neutrophil extravasation and chemotaxis in under conditions of aseptic inflammation and further suggest that the cell recruitment signals that that operate during bacterial infection may be quantitatively and/or qualitatively distinct. These studies raise the intriguing possibility that targeting monocytes during chronic inflammatory diseases such as rheumatoid arthritis or acute inflammatory conditions such as ischemia reperfusion injury might provide safer and more selective anti-inflammatory therapies than those that target neutrophils directly. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3789-3796 ◽  
Author(s):  
Masashi Tanaka ◽  
Susumu Nakae ◽  
Raya D. Terry ◽  
Golnaz K. Mokhtari ◽  
Feny Gunawan ◽  
...  

After cardiac transplantation, graft damage occurs secondary to ischemia-reperfusion injury and acute rejection. This damage ultimately leads to the development of graft coronary artery disease (GCAD), which limits long-term graft survival. Apoptosis is directly involved in graft injury, contributing to the development of GCAD. To assess the role of the antiapoptotic factor Bcl-2 in the process of GCAD, we transplanted hearts from FVB transgenic mice overexpressing human Bcl-2 under the control of α-myosin heavy chain promoter into allogenic C57BL/6 mice. Bcl-2 overexpression led to reduced cytochrome c–mediated caspase-9–dependent cardiomyocyte apoptosis and local inflammation (neutrophil infiltration and proinflammatory cytokine production) in cardiac allografts during ischemia-reperfusion injury and also led to reduced immune responses (inflammatory cell infiltration, production of TH1 cytokines and chemokines, and expression of adhesion molecules) during acute and chronic rejection without affecting host CD4+ and CD8+ cell responses in the spleen. Thus, local Bcl-2 expression directly contributes to the modulation of local immune responses in allograft rejection, resulting in attenuated GCAD. In conclusion, our findings suggest that the modulation of Bcl-2 expression by pharmacologic up-regulation or gene transfer may be of clinical benefit in the short- and long-term function of cardiac allografts.


Epigenomics ◽  
2021 ◽  
Author(s):  
Xiang-feng Bai ◽  
Rui-ze Niu ◽  
Jia Liu ◽  
Xu-dong Pan ◽  
Feng Wang ◽  
...  

The morbidity and mortality of myocardial ischemia reperfusion injury (MIRI) have increased in modern society. Noncoding RNAs (ncRNAs), including lncRNAs, circRNAs, piRNAs and miRNAs, have been reported in a variety of studies to be involved in pathological initiation and developments of MIRI. Hence this review focuses on the current research regarding these ncRNAs in MIRI. We comprehensively introduce the important features of lncRNAs, circRNAs, piRNA and miRNAs and then summarize the published studies of ncRNAs in MIRI. A clarification of lncRNA–miRNA–mRNA, lncRNA–transcription factor–mRNA and circRNA–miRNA–mRNA axes in MIRI follows, to further elucidate the crucial roles of ncRNAs in MIRI. Bioinformatics analysis has revealed the biological correlation of mRNAs with MIRI. We provide a comprehensive perspective for the roles of these ncRNAs and their related networks in MIRI, providing a theoretical basis for preclinical and clinical studies on ncRNA-based gene therapy for MIRI treatment.


Sign in / Sign up

Export Citation Format

Share Document