scholarly journals DNA Methylation in Solid Tumors: Functions and Methods of Detection

2021 ◽  
Vol 22 (8) ◽  
pp. 4247
Author(s):  
Andrea Martisova ◽  
Jitka Holcakova ◽  
Nasim Izadi ◽  
Ravery Sebuyoya ◽  
Roman Hrstka ◽  
...  

DNA methylation, i.e., addition of methyl group to 5′-carbon of cytosine residues in CpG dinucleotides, is an important epigenetic modification regulating gene expression, and thus implied in many cellular processes. Deregulation of DNA methylation is strongly associated with onset of various diseases, including cancer. Here, we review how DNA methylation affects carcinogenesis process and give examples of solid tumors where aberrant DNA methylation is often present. We explain principles of methods developed for DNA methylation analysis at both single gene and whole genome level, based on (i) sodium bisulfite conversion, (ii) methylation-sensitive restriction enzymes, and (iii) interactions of 5-methylcytosine (5mC) with methyl-binding proteins or antibodies against 5mC. In addition to standard methods, we describe recent advances in next generation sequencing technologies applied to DNA methylation analysis, as well as in development of biosensors that represent their cheaper and faster alternatives. Most importantly, we highlight not only advantages, but also disadvantages and challenges of each method.

2017 ◽  
Vol 9 (10) ◽  
pp. 1537-1549 ◽  
Author(s):  
Takaaki Kurinomaru ◽  
Ryoji Kurita

The determination of epigenetic modification, especially that of 5-methylcytosine in the CpG sequence in mammals, has attracted attention because it should prove valuable in a wide range of research fields including diagnosis, drug discovery and therapy. In this review, we introduce the recent development of bisulfite-free DNA methylation analysis, which we classify into two categories, namely labelling-based and labelling-free assays.


2021 ◽  
Vol 16 (3) ◽  
pp. S490
Author(s):  
D.M. Aguilar-Beltrán ◽  
A.G. Alcázar-Ramos ◽  
A.L. Vega-Rodríguez ◽  
D.G. García-Gutiérrez ◽  
A.D. Bertadillo-Jilote ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3587
Author(s):  
Benjamin Lebecque ◽  
Céline Bourgne ◽  
Véronique Vidal ◽  
Marc G. Berger

Chronic Myeloid Leukemia (CML) is a model to investigate the impact of tumor intra-clonal heterogeneity in personalized medicine. Indeed, tyrosine kinase inhibitors (TKIs) target the BCR-ABL fusion protein, which is considered the major CML driver. TKI use has highlighted the existence of intra-clonal heterogeneity, as indicated by the persistence of a minority subclone for several years despite the presence of the target fusion protein in all cells. Epigenetic modifications could partly explain this heterogeneity. This review summarizes the results of DNA methylation studies in CML. Next-generation sequencing technologies allowed for moving from single-gene to genome-wide analyses showing that methylation abnormalities are much more widespread in CML cells. These data showed that global hypomethylation is associated with hypermethylation of specific sites already at diagnosis in the early phase of CML. The BCR-ABL-independence of some methylation profile alterations and the recent demonstration of the initial intra-clonal DNA methylation heterogeneity suggests that some DNA methylation alterations may be biomarkers of TKI sensitivity/resistance and of disease progression risk. These results also open perspectives for understanding the epigenetic/genetic background of CML predisposition and for developing new therapeutic strategies.


GigaScience ◽  
2020 ◽  
Vol 9 (5) ◽  
Author(s):  
Katarzyna Murat ◽  
Björn Grüning ◽  
Paulina Wiktoria Poterlowicz ◽  
Gillian Westgate ◽  
Desmond J Tobin ◽  
...  

Abstract Background Infinium Human Methylation BeadChip is an array platform for complex evaluation of DNA methylation at an individual CpG locus in the human genome based on Illumina’s bead technology and is one of the most common techniques used in epigenome-wide association studies. Finding associations between epigenetic variation and phenotype is a significant challenge in biomedical research. The newest version, HumanMethylationEPIC, quantifies the DNA methylation level of 850,000 CpG sites, while the previous versions, HumanMethylation450 and HumanMethylation27, measured >450,000 and 27,000 loci, respectively. Although a number of bioinformatics tools have been developed to analyse this assay, they require some programming skills and experience in order to be usable. Results We have developed a pipeline for the Galaxy platform for those without experience aimed at DNA methylation analysis using the Infinium Human Methylation BeadChip. Our tool is integrated into Galaxy (http://galaxyproject.org), a web-based platform. This allows users to analyse data from the Infinium Human Methylation BeadChip in the easiest possible way. Conclusions The pipeline provides a group of integrated analytical methods wrapped into an easy-to-use interface. Our tool is available from the Galaxy ToolShed, GitHub repository, and also as a Docker image. The aim of this project is to make Infinium Human Methylation BeadChip analysis more flexible and accessible to everyone.


Sign in / Sign up

Export Citation Format

Share Document