scholarly journals Supramolecular Nanofibers from Collagen-Mimetic Peptides Bearing Various Aromatic Groups at N-Termini via Hierarchical Self-Assembly

2021 ◽  
Vol 22 (9) ◽  
pp. 4533
Author(s):  
Tomoyuki Koga ◽  
Shinya Kingetsu ◽  
Nobuyuki Higashi

Self-assembly of artificial peptides has been widely studied for constructing nanostructured materials, with numerous potential applications in the nanobiotechnology field. Herein, we report the synthesis and hierarchical self-assembly of collagen-mimetic peptides (CMPs) bearing various aromatic groups at the N-termini, including 2-naphthyl, 1-naphtyl, anthracenyl, and pyrenyl groups, into nanofibers. The CMPs (R-(GPO)n: n > 4) formed a triple helix structure in water at 4 °C, as confirmed via CD analyses, and their conformations were more stable with increasing hydrophobicity of the terminal aromatic group and peptide chain length. The resulting pre-organized triple helical CMPs showed diverse self-assembly into highly ordered nanofibers, reflecting their slight differences in hydrophobic/hydrophilic balance and configuration of aromatic templates. TEM analysis demonstrated that 2Np-CMPn (n = 6 and 7) and Py-CMP6 provided well-developed natural collagen-like nanofibers and An-CMPn (n = 5–7) self-assembled into rod-like micelle fibers. On the other hand, 2Np-CMP5 and 1Np-CMP6 were unable to form nanofibers under the same conditions. Furthermore, the Py-CMP6 nanofiber was found to encapsulate a guest hydrophobic molecule, Nile red, and exhibited unique emission behavior based on the specific nanostructure. In addition to the ability of CMPs to bind small molecules, their controlled self-assembly enables their versatile utilization in drug delivery and wavelength-conversion nanomaterials.

2008 ◽  
Vol 105 (25) ◽  
pp. 8513-8518 ◽  
Author(s):  
M. A. Cejas ◽  
W. A. Kinney ◽  
C. Chen ◽  
J. G. Vinter ◽  
H. R. Almond ◽  
...  

MRS Bulletin ◽  
2021 ◽  
Author(s):  
Lorena Ruiz-Rodriguez ◽  
Philip Loche ◽  
Lise Thornfeldt Hansen ◽  
Roland R. Netz ◽  
Peter Fratzl ◽  
...  

Abstract Native collagen molecules usually contract upon dehydration, but the details of their interaction with water are poorly understood. Previous molecular modeling studies indicated a spatially inhomogeneous response, with a combination of local axial expansion and contraction. Such sequence-dependent effects are difficult to study with native collagen. In this article, we use collagen-mimetic peptides (CMPs) to investigate the effect of osmotic pressure on several collagen-mimetic sequences. Synchrotron x-ray diffraction combined with molecular dynamics simulations shows that CMPs pack differently depending on osmotic pressure and exhibit changes in the helical rise per residue of individual molecules. Infrared spectroscopy reveals that osmotic pressure affects the stability of the triple helix through changes in triple helix-stabilizing hydrogen bonds. Surprisingly, CMPs with the canonical collagen sequence glycine–proline–hydroxyproline are found to elongate upon dehydration, while sequence modifications are able to reverse this tendency. This strongly suggests that the overall contraction of native collagen molecules is not programmed into the canonical sequence but is specific to local amino acids that substitute for proline or hydroxyproline along the protein chain. Collagen is an essential protein in mammalian extracellular tissues and a better understanding of its mechanical function is important both from a materials science and from a biomedical viewpoint. Recently, collagen has been shown to contract along the fibre direction when subjected to osmotic stress, a process that could play important roles in strengthening bone and in developing tissue tension during extracellular matrix development. The present work uses collagen-like short peptides to show that the canonical collagen sequence is not responsible for this contraction. The conclusion is that the collagen amino acid sequence must have evolved to include guest sequences within the canonical glycine-proline-hydroxyproline repeat that provide the observed contractility. Impact statement Collagen is an essential protein in mammalian extracellular tissues and a better understanding of its mechanical function is important both from a materials science and from a biomedical viewpoint. Recently, collagen has been shown to contract along the fibre direction when subjected to osmotic stress, a process that could play important roles in strengthening bone and in developing tissue tension during extracellular matrix development. The present work uses collagen-like short peptides to show that the canonical collagen sequence is not responsible for this contraction. The conclusion is that the collagen amino acid sequence must have evolved to include guest sequences within the canonical glycine-proline-hydroxyproline that provide the observed contractility. Graphic Abstract


2014 ◽  
Vol 136 (11) ◽  
pp. 4300-4308 ◽  
Author(s):  
Tao Jiang ◽  
Chunfu Xu ◽  
Yang Liu ◽  
Zheng Liu ◽  
Joseph S. Wall ◽  
...  

2017 ◽  
Vol 19 (28) ◽  
pp. 18321-18329 ◽  
Author(s):  
Lucas Schwob ◽  
Mathieu Lalande ◽  
Jimmy Rangama ◽  
Dmitrii Egorov ◽  
Ronnie Hoekstra ◽  
...  

By monitoring ionization and fragmentation after single-photon absorption, we show that an isolated collagen triple helix model is stabilized by proline hydroxylation.


2014 ◽  
Vol 136 (41) ◽  
pp. 14417-14424 ◽  
Author(s):  
Biplab Sarkar ◽  
Lesley E. R. O’Leary ◽  
Jeffrey D. Hartgerink

2019 ◽  
Vol 10 (45) ◽  
pp. 6116-6121 ◽  
Author(s):  
Tan Ji ◽  
Lei Xia ◽  
Wei Zheng ◽  
Guang-Qiang Yin ◽  
Tao Yue ◽  
...  

We present a new family of porphyrin-functionalized coordination star polymers prepared through combination of coordination-driven self-assembly and post-assembly polymerization. Their self-assembly behaviour in water and potential for photodynamic therapy were demonstrated.


2019 ◽  
Vol 24 (32) ◽  
pp. 3739-3757 ◽  
Author(s):  
Chandrabose Selvaraj ◽  
Sanjeev K. Singh

Nucleic acid is the key unit and a predominant genetic material for interpreting the fundamental basis of genetic information in an organism and now it is used for the evolution of a novel group of therapeutics. To identify the potential impact on the biological science, it receives high recognition in therapeutic applications. Due to its selective recognition of molecular targets and pathways, DNA significantly imparts tremendous specificity of action. Examining the properties of DNA holds numerous advantages in assembly, interconnects, computational elements, along with potential applications of DNA self-assembly and scaffolding include nanoelectronics, biosensors, and programmable/autonomous molecular machines. The interaction of low molecular weight, small molecules with DNA is a significant feature in pharmacology. Based on the mode of binding mechanisms, small molecules are categorized as intercalators and groove binders having a significant role in target-based drug development. The understanding mechanism of drug-DNA interaction plays an important role in the development of novel drug molecules with more effective and lesser side effects. This article attempts to outline those interactions of drug-DNA with both experimental and computational advances, including ultraviolet (UV) -visible spectroscopy, fluorescent spectroscopy, circular dichroism, nuclear magnetic resonance (NMR), molecular docking and dynamics, and quantum mechanical applications.


Sign in / Sign up

Export Citation Format

Share Document