scholarly journals Serum APOA4 Pharmacodynamically Represents Administered Recombinant Human Hepatocyte Growth Factor (E3112)

2021 ◽  
Vol 22 (9) ◽  
pp. 4578
Author(s):  
Sotaro Motoi ◽  
Mai Uesugi ◽  
Takashi Obara ◽  
Katsuhiro Moriya ◽  
Yoshihisa Arita ◽  
...  

Background: Hepatocyte growth factor (HGF) is an endogenously induced bioactive molecule that has strong anti-apoptotic and tissue repair activities. In this research, we identified APOA4 as a novel pharmacodynamic (PD) marker of the recombinant human HGF (rh-HGF), E3112. Methods: rh-HGF was administered to mice, and their livers were investigated for the PD marker. Candidates were identified from soluble proteins and validated by using human hepatocytes in vitro and an animal disease model in vivo, in which its c-Met dependency was also ensured. Results: Among the genes induced or highly enhanced after rh-HGF exposure in vivo, a soluble apolipoprotein, Apoa4, was found to be induced by rh-HGF in the murine liver. By using primary cultured human hepatocytes, the significant induction of human APOA4 was observed at the mRNA and protein levels, and it was inhibited in the presence of a c-Met inhibitor. Although mice constitutively expressed Apoa4 mRNA in the small intestine and the liver, the liver was the primary organ affected by administered rh-HGF to strongly induce APOA4 in a dose- and c-Met-dependent manner. Serum APOA4 levels were increased after rh-HGF administration, not only in normal mice but also in anti-Fas-induced murine acute liver failure (ALF), which confirmed the pharmacodynamic nature of APOA4. Conclusions: APOA4 was identified as a soluble PD marker of rh-HGF with c-Met dependency. It should be worthwhile to clinically validate its utility through clinical trials with healthy subjects and ALF patients.

1996 ◽  
Vol 16 (3) ◽  
pp. 1115-1125 ◽  
Author(s):  
M Jeffers ◽  
S Rong ◽  
G F Vande Woude

Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic effector of cells expressing the Met tyrosine kinase receptor. Although HGF/SF is synthesized by mesenchymal cells and acts predominantly on epithelial cells, we have recently demonstrated that human sarcoma cell lines often inappropriately express high levels of Met and respond mitogenically to HGF/SF. In the present report we show that HGF/SF-Met signalling in the human leiomyosarcoma cell line SK-LMS-1 enhances its in vivo tumorigenicity, an effect for which the mitogenicity of this signalling pathway is likely to play a role. In addition, we found that HGF/SF-Met signalling dramatically induces the in vitro invasiveness and in vivo metastatic potential of these cells. We have studied the molecular basis by which HGFSF-Met signalling mediates the invasive phenotype. A strong correlation has previously been demonstrated between the activation of the urokinase plasminogen activator (uPA) proteolysis network and the acquisition of the invasive-metastatic phenotype, and we show here that HGF/SF-Met signalling significantly increases the protein levels of both uPA and its cellular receptor in SK-LMS-1 cells. This results in elevated levels of cell-associated uPA and enhanced plasmin-generating ability by these cells. These studies couple HGF/SF-Met signalling to the activation of proteases that mediate dissolution of the extracellular matrix-basement membrane, and important property for cellular invasion-metastasis.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Liying Cai ◽  
Brian H Johnstone ◽  
Zhong Liang ◽  
Dmitry Traktuev ◽  
Todd G Cook ◽  
...  

Background Paracrine stimulation of endogenous repair, rather than direct tissue regeneration, is increasingly accepted as a major mode of therapeutic stem and progenitor cell action; yet, this principle has not been fully established in vivo . Adipose-derived stem cells (ASCs) secrete many factors and promote reperfusion and tissue repair in ischemia models. RNA interference was used to silence the expression of the abundant protein, hepatocyte growth factor (HGF), to determine its contribution to ASC potency in vivo . Methods and Results Dual-cassette lentiviral vectors, expressing GFP and either a small hairpin RNA (shRNA) specific for HGF mRNA (shHGF) or a control sequence (shCtrl), were used to stably transduce ASCs (ASC-shHGF or ASC-shCtrl). ASC-shHGF secreted 5-fold less HGF, which resulted in a reduced ability of these cells to promote survival, proliferation and migration of mature and progenitor endothelial cells in vitro ( p <0.01). HGF knockdown also severely impaired the ability of ASCs to promote reperfusion in a mouse hindlimb ischemia model. Perfusion of the ischemic leg at 15 d in mice treated with ASC-Ctrl was 84±4%, compared to only 69±5% for ASC-shHGF ( p <0.05). Even so, ASC-shHGF retained residual activity as indicated by greater reperfusion ( p <0.05) than with saline treatment (58±6%). Capillary densities in ischemic tissues from each group followed a similar rank order (ASC-Ctrl>ASC-shHGF>saline) ( p <0.05 between each group). While there was no difference in total GFP + cells in ischemic limbs at 5 d after infusion, indicating similar homing potentials, 3-fold fewer ASC-shHGF were present in ischemic tissues at 15 d compared to ASC-shCtrl ( p <0.01). This was accompanied by an increase in TUNEL-positive ASC-shHGF cells (61 ± 0.1%) compared to ASC-Ctrl (41% ± 3.2%) in ischemic tissues at 5 d ( p <0.01); suggesting that attenuated potency of ASC-shHGF was related to reduced survival in ischemic tissues. Conclusions These results indicate that secretion of HGF is critically important for ASC potency. In addition to promoting endogenous repair, the data suggest that an important effect of HGF is autocrine promotion of ASC survival in ischemic tissue. Enhanced donor cell survival is an important goal for increasing the efficacy of cell therapy.


2020 ◽  
Vol 12 ◽  
pp. 175883592092679
Author(s):  
Seung Tae Kim ◽  
Jung Yong Hong ◽  
Se Hoon Park ◽  
Joon Oh Park ◽  
Young Whan Park ◽  
...  

Background: YYB101, a humanized monoclonal antibody against hepatocyte growth factor (HGF), has shown safety and efficacy in vitro and in vivo. This is a first-in-human trial of this antibody. Materials and Methods: YYB101 was administered intravenously to refractory cancer patients once every 4 weeks for 1 month, and then once every 2 weeks until disease progression or intolerable toxicity, at doses of 0.3, 1, 3, 5, 10, 20, 30 mg/kg, according to a 3+3 dose escalation design. Maximum tolerated dose, safety, pharmacokinetics, and pharmacodynamics were studied. HGF, MET, PD-L1, and ERK expression was evaluated for 9 of 17 patients of the expansion cohort (20 mg/kg). Results: In 39 patients enrolled, no dose-limiting toxicity was observed at 0.3 mg/kg, and the most commonly detected toxicity was generalized edema ( n = 7, 18.9%) followed by pruritis and nausea ( n = 5, 13.5%, each), fatigue, anemia, and decreased appetite ( n = 4, 10.8%, each). No patient discontinued treatment because of adverse events. YYB101 showed dose-proportional pharmacokinetics up to 30 mg/kg. Partial response in 1 (2.5%) and stable disease in 17 (43.5%) were observed. HGF, MET, PD-L1, and ERK proteins were not significant predictors for treatment response. However, serum HGF level was significantly lowered in responders upon drug administration. RNA sequencing revealed a mesenchymal signature in two long-term responders. Conclusion: YYB101 showed favorable safety and efficacy in patients with refractory solid tumors. Based on this phase I trial, a phase II study on the YYB101 + irinotecan combination in refractory metastatic colorectal cancer patients is planned. Conclusion: ClinicalTrials.gov Identifier: NCT02499224


1998 ◽  
Vol 274 (1) ◽  
pp. G21-G28 ◽  
Author(s):  
Ke-Xin Liu ◽  
Yukio Kato ◽  
Tai-Ichi Kaku ◽  
Kunio Matsumoto ◽  
Toshikazu Nakamura ◽  
...  

The effect of protamine on the proliferative activity of hepatocyte growth factor (HGF) was examined in α-naphthyl isothiocyanate-intoxicated rats. Protamine preinjection increased the hepatocyte labeling index induced by HGF four- to fivefold. A similar effect was also observed in partially hepatectomized rats. Because a cell surface heparin-like substance can bind to HGF and protamine has an affinity for heparin, protamine may affect HGF pharmacokinetics. In fact, protamine injection caused a transient increase in plasma HGF concentrations after administration of HGF and, in vitro, protamine eluted HGF prebound to heparin-Sepharose. Protamine also reduced the plasma clearance of HGF and increased 2.5-fold the exposure of hepatocytes to HGF in vivo. The enhancing effect of protamine on the mitogenic response of hepatocytes to HGF was also observed in vitro (∼2-fold after protamine pretreatment compared with HGF alone), suggesting that the enhancing effect of protamine on HGF-induced liver regeneration results from dual effects exerted by protamine 1) lowering the overall elimination of HGF and 2) directly stimulating hepatocyte mitosis induced by HGF.


Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 3924-3932 ◽  
Author(s):  
Lingfei Xu ◽  
Cuihua Gao ◽  
Mark S. Sands ◽  
Shi-Rong Cai ◽  
Timothy C. Nichols ◽  
...  

AbstractHemophilia B is a bleeding disorder resulting from factor IX (FIX) deficiency that might be treated with gene therapy. Neonatal delivery would correct the disease sooner than would transfer into adults, and could reduce immunological responses. Neonatal mice were injected intravenously with a Moloney murine leukemia virus–based retroviral vector (RV) expressing canine FIX (cFIX). They achieved 150% to 280% of normal cFIX antigen levels in plasma (100% is 5 μg/mL), which was functional in vitro and in vivo. Three newborn hemophilia B dogs that were injected intravenously with RV achieved 12% to 36% of normal cFIX antigen levels, which improved coagulation tests. Only one mild bleed has occurred during 14 total months of evaluation. This is the first demonstration of prolonged expression after neonatal gene therapy for hemophilia B in mice or dogs. Most animals failed to make antibodies to cFIX, demonstrating that neonatal gene transfer may induce tolerance. Although hepatocytes from newborns replicate, those from adults do not. Adult mice therefore received hepatocyte growth factor to induce hepatocyte replication prior to intravenous injection of RV. This resulted in expression of 35% of normal cFIX antigen levels for 11 months, although all mice produced anti-cFIX antibodies. This is the first demonstration that high levels of FIX activity can be achieved with an RV in adults without a partial hepatectomy to induce hepatocyte replication. We conclude that RV-mediated hepatic gene therapy is effective for treating hemophilia B in mice and dogs, although the immune system may complicate gene transfer in adults.


Reproduction ◽  
2006 ◽  
Vol 132 (2) ◽  
pp. 291-299 ◽  
Author(s):  
Mehmet Uzumcu ◽  
Zui Pan ◽  
Yi Chu ◽  
Peter E Kuhn ◽  
Rob Zachow

Hepatocyte growth factor (HGF) regulates granulosa cell (GC) steroidogenesis and suppresses apoptosis in non-ovarian cells. The hypothesis was thus developed that intraovarian HGF supports folliculogenesis by mediating steroidogenesis and suppressing apoptosis. To investigate the latter, the anti-apoptotic actions of HGF were tested in GCs and follicles isolated from immature rats. Results showed that HGF suppressed apoptosis in GC and follicle cultures as visualized using apoptosis indicator dye, YO-PRO-1. Immunohistochemistry was used to investigate the distribution of HGF, c-met, and HGF activator (HGFA) protein during folliculogenesis in equine chorionic gonadotropin (eCG)-primed rats. Immunoreactive HGF content was the greatest in GCs within preantral follicles. Following eCG, large antral follicles showed elevated HGF staining in theca and interstitial cells when compared with GCs. Intense c-met staining was observed in GCs within non-primed small preantral follicles; following eCG, the level of c-met was diminished in GCs, but increased within theca and interstitial cells. Theca, interstitium, and GCs in non-primed and primed ovaries contained HGFA. Following eCG, HGFA was more apparent in theca cells and the interstitium when compared to that in GCs within large antral follicles. The presence of HGF, c-met, and HGFA in preantral follicles would potentially enable the anti-apoptotic effects of HGF that were observed in vitro to occur in vivo. Advanced folliculogenesis led to a change in the cellular distribution of the HGF, c-met, and HGFA, suggesting that the ovarian HGF system is hormonally regulated in vivo.


1996 ◽  
Vol 316 (3) ◽  
pp. 879-886 ◽  
Author(s):  
George G. SKOUTERIS ◽  
Claus H. SCHRÖDER

Primary rat hepatocytes stimulated in vitro with the addition of a deleted form of hepatocyte growth factor (dHGF) enter the S-phase 48 h after addition of the growth factor. The c-myc gene is believed to play a role in a variety of cellular stages, such as proliferation, differentiation and cell death. In primary hepatocytes c-myc was expressed constitutively at both mRNA and protein levels, independently of the growth conditions. dHGF induced significant c-myc expression at times correlated with the long-lasting pre-S phase, and no induction was observed at the G0/G1 traverse compared with the unstimulated hepatocytes. An antisense construct coding for all three exons of c-myc was imported into hepatocytes by using the transferrin receptor-mediated endocytosis methodology (transferrinfection). Expression of the antisense construct inhibited the biosynthesis of the c-Myc protein, however it did not interfere with the expression of c-met, encoding the receptor for HGF/dHGF. Continuous expression of the antisense construct inhibited entry of the hepatocytes into the S-phase. Regulated induction of the antisense c-myc by dexamethasone for up to 6 h in culture, did not interfere with the entry of hepatocytes into the S-phase. c-myc expression was shown to be required between 6 and 12 h in dHGF-stimulated hepatocytes, and inhbition of its expression during this time by the antisense myc construct did not allow these cells to enter the S-phase. Inhibition of c-myc biosynthesis between 24 and 48 h hours slightly affected the DNA synthetic response. It is proposed that the expression of c-Myc protein interferes with the ‘priming’ of hepatocytes to become responsive to growth-factor stimuli, or in the absence of such stimuli it interferes with the maintenance of a non-proliferating phenotype and subsequent in vitro de-differentiation.


Blood ◽  
2006 ◽  
Vol 109 (7) ◽  
pp. 3042-3049 ◽  
Author(s):  
Wenlin Du ◽  
Yutaka Hattori ◽  
Taketo Yamada ◽  
Kunio Matsumoto ◽  
Toshikazu Nakamura ◽  
...  

Abstract Hepatocyte growth factor (HGF) promotes cell growth and motility and also increases neovascularization. Multiple myeloma (MM) cells produce HGF, and the plasma concentration of HGF is significantly elevated in patients with clinically active MM, suggesting that HGF might play a role in the pathogenesis of MM. NK4, an antagonist of HGF, is structurally homologous to angiostatin, and our previous report showed that NK4 inhibited the proliferation of vascular endothelial cells induced by HGF stimulation. The purposes of this study were to elucidate the contribution of HGF to the growth of MM cells as well as to investigate the possibility of the therapeutic use of NK4. In vitro study showed that NK4 protein stabilized the growth of MM cell lines and regulated the activation of c-MET, ERK1/2, STAT3, and AKT-1. Recombinant adenovirus containing NK4 cDNA (AdCMV.NK4) was injected intramuscularly into lcr/scid mice bearing tumors derived from HGF-producing MM cells. AdCMV.NK4 significantly inhibited the growth of these tumors in vivo. Histologic examination revealed that AdCMV.NK4 induced apoptosis of MM cells, accompanied by a reduction in neovascularization in the tumors. Thus, NK4 inhibited the growth of MM cells via antiangiogenic as well as direct antitumor mechanisms. The molecular targeting of HGF by NK4 could be applied as a novel therapeutic approach to MM.


Sign in / Sign up

Export Citation Format

Share Document