scholarly journals Editorial of Special Issue “Sirtuins in Health and Disease”

2021 ◽  
Vol 22 (10) ◽  
pp. 5054
Author(s):  
Simon Sedej ◽  
Heiko Bugger

The discovery and characterization of sirtuins as NAD+-dependent deacylases have transformed our understanding of post-translational protein regulation [...]

2001 ◽  
Vol 66 (9) ◽  
pp. 1315-1340 ◽  
Author(s):  
Vladimir J. Balcar ◽  
Akiko Takamoto ◽  
Yukio Yoneda

The review highlights the landmark studies leading from the discovery and initial characterization of the Na+-dependent "high affinity" uptake in the mammalian brain to the cloning of individual transporters and the subsequent expansion of the field into the realm of molecular biology. When the data and hypotheses from 1970's are confronted with the recent developments in the field, we can conclude that the suggestions made nearly thirty years ago were essentially correct: the uptake, mediated by an active transport into neurons and glial cells, serves to control the extracellular concentrations of L-glutamate and prevents the neurotoxicity. The modern techniques of molecular biology may have provided additional data on the nature and location of the transporters but the classical neurochemical approach, using structural analogues of glutamate designed as specific inhibitors or substrates for glutamate transport, has been crucial for the investigations of particular roles that glutamate transport might play in health and disease. Analysis of recent structure/activity data presented in this review has yielded a novel insight into the pharmacological characteristics of L-glutamate transport, suggesting existence of additional heterogeneity in the system, beyond that so far discovered by molecular genetics. More compounds that specifically interact with individual glutamate transporters are urgently needed for more detailed investigations of neurochemical characteristics of glutamatergic transport and its integration into the glutamatergic synapses in the central nervous system. A review with 162 references.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 237
Author(s):  
Carolina Cardell ◽  
Jose Santiago Pozo-Antonio

The physical–chemical characterization of natural and synthetic historical inorganic and mineral pigments, which may be found embedded in paintings (real or mock-ups), glass, enamel, ceramics, beads, tesserae, etc., as well as their alteration under different decay scenarios, is a demanding line of investigation. This field of research is now both well established and dynamic, as revealed by the numerous publications in high-quality journals of varied scientific disciplines. [...]


2021 ◽  
Vol 7 (6) ◽  
pp. 89
Author(s):  
Valerio De Santis

Recent advances in computational electromagnetics (CEMs) have made the full characterization of complex magnetic materials possible, such as superconducting materials, composite or nanomaterials, rare-earth free permanent magnets, etc [...]


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
David P Marancik ◽  
Justin R Perrault ◽  
Lisa M Komoroske ◽  
Jamie A Stoll ◽  
Kristina N Kelley ◽  
...  

Abstract Evaluating sea turtle health can be challenging due to an incomplete understanding of pathophysiologic responses in these species. Proteome characterization of clinical plasma samples can provide insights into disease progression and prospective biomarker targets. A TMT-10-plex-LC–MS/MS platform was used to characterize the plasma proteome of five, juvenile, green turtles (Chelonia mydas) and compare qualitative and quantitative protein changes during moribund and recovered states. The 10 plasma samples yielded a total of 670 unique proteins. Using ≥1.2-fold change in protein abundance as a benchmark for physiologic upregulation or downregulation, 233 (34.8%) were differentially regulated in at least one turtle between moribund and recovered states. Forty-six proteins (6.9%) were differentially regulated in all five turtles with two proteins (0.3%) demonstrating a statistically significant change. A principle component analysis showed protein abundance loosely clustered between moribund samples or recovered samples and for turtles that presented with trauma (n = 3) or as intestinal floaters (n = 2). Gene Ontology terms demonstrated that moribund samples were represented by a higher number of proteins associated with blood coagulation, adaptive immune responses and acute phase response, while recovered turtle samples included a relatively higher number of proteins associated with metabolic processes and response to nutrients. Abundance levels of 48 proteins (7.2%) in moribund samples significantly correlated with total protein, albumin and/or globulin levels quantified by biochemical analysis. Differentially regulated proteins identified with immunologic and physiologic functions are discussed for their possible role in the green turtle pathophysiologic response and for their potential use as diagnostic biomarkers. These findings enhance our ability to interpret sea turtle health and further progress conservation, research and rehabilitation programs for these ecologically important species.


2010 ◽  
Vol 76 (764) ◽  
pp. 383-385 ◽  
Author(s):  
Taiju SHIBATA ◽  
Junya SUMITA ◽  
Taiyo MAKITA ◽  
Takashi TAKAGI ◽  
Eiji KUNIMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document