scholarly journals INTACT vs. FANS for Cell-Type-Specific Nuclei Sorting: A Comprehensive Qualitative and Quantitative Comparison

2021 ◽  
Vol 22 (10) ◽  
pp. 5335
Author(s):  
Monika Chanu Chongtham ◽  
Tamer Butto ◽  
Kanak Mungikar ◽  
Susanne Gerber ◽  
Jennifer Winter

Increasing numbers of studies seek to characterize the different cellular sub-populations present in mammalian tissues. The techniques “Isolation of Nuclei Tagged in Specific Cell Types” (INTACT) or “Fluorescence-Activated Nuclei Sorting” (FANS) are frequently used for isolating nuclei of specific cellular subtypes. These nuclei are then used for molecular characterization of the cellular sub-populations. Despite the increasing popularity of both techniques, little is known about their isolation efficiency, advantages, and disadvantages or downstream molecular effects. In our study, we compared the physical and molecular attributes of sfGFP+ nuclei isolated by the two methods—INTACT and FANS—from the neocortices of Arc-CreERT2 × CAG-Sun1/sfGFP animals. We identified differences in efficiency of sfGFP+ nuclei isolation, nuclear size as well as transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) states. Therefore, our study presents a comprehensive comparison between the two widely used nuclei sorting techniques, identifying the advantages and disadvantages for both INTACT and FANS. Our conclusions are summarized in a table to guide researchers in selecting the most suitable methodology for their individual experimental design.

2018 ◽  
Vol 116 (1) ◽  
pp. 303-312 ◽  
Author(s):  
Erol C. Bayraktar ◽  
Lou Baudrier ◽  
Ceren Özerdem ◽  
Caroline A. Lewis ◽  
Sze Ham Chan ◽  
...  

Mitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially localized 3XHA epitope tag (MITO-Tag) for the fast isolation of mitochondria from cultured cells to generate MITO-Tag Mice. Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology, and our strategy should be generally applicable for studying other mammalian organelles in specific cell types in vivo.


2018 ◽  
Author(s):  
Erol Can Bayraktar ◽  
Lou Baudrier ◽  
Ceren Özerdem ◽  
Caroline A. Lewis ◽  
Sze Ham Chan ◽  
...  

ABSTRACTMitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell-types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially-localized 3XHA epitope-tag (“MITO-Tag”) for the fast isolation of mitochondria from cultured cells to now generate “MITO-Tag Mice.” Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology and our strategy should be generally applicable for studying other mammalian organelles in specific cell-types in vivo.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e19013-e19013
Author(s):  
Marianne T. Santaguida ◽  
Ryosuke Kita ◽  
Steven A. Schaffert ◽  
Erica K. Anderson ◽  
Kamran A Ali ◽  
...  

e19013 Background: Understanding the heterogeneity of AML is necessary for developing targeted drugs and diagnostics. A key measure of heterogeneity is the variance in response to treatments. Previously, we developed an ex vivo flow cytometry drug sensitivity assay (DSA) that predicted response to treatments in myelodysplastic syndrome. Unlike bulk cell viability measures of other drug sensitivity assays, our flow cytometry assay provides single cell resolution. The assay measures a drug’s effect on the viability or functional state of specific cell types. Here we present the development of this technology for AML, with additional measurements of DNA-Seq and RNA-Seq. Using the data from this assay, we aim to characterize the heterogeneity in AML drug sensitivity and the molecular mechanisms that drive it. Methods: As an initial feasibility analysis, we assayed 1 bone marrow and 3 peripheral blood AML patient samples. For the DSA, the samples were cultured with six AML standard of care (SOC) compounds across seven doses, in addition to two combinations. The cells were stained to detect multiple cell types including tumor blasts, and drug response was measured by flow cytometry. For the multi-omics, the cells were magnetically sorted to enrich for blasts and then assayed using a targeted 400 gene DNA-Seq panel and whole bulk transcriptome RNA-Seq. For comparison with BeatAML, Pearson correlations between gene expression and venetoclax sensitivity were investigated. Results: In our drug sensitivity assay, we measured dose response curves for the six SOC compounds, for each different cell type across each sample. The dose responses had cell type specific effects, including differences in drug response between CD11b+ blasts, CD11b- blasts, and other non-blast populations. Integrating with the DNA-Seq and RNA-Seq data, known associations between ex vivo drug response and gene expression were identified with additional cell type specificity. For example, BCL2A1 expression was negatively correlated with venetoclax sensitivity in CD11b- blasts but not in CD11b+ blasts. To further corroborate, among the top 1000 genes associated with venetoclax sensitivity in BeatAML, 93.7% had concordant directionality in effect. Conclusions: Here we describe the development of an integrated ex vivo drug sensitivity assay and multi-omics dataset. The data demonstrated that ex vivo responses to compounds differ between cell types, highlighting the importance of measuring drug response in specific cell types. In addition, we demonstrated that integrating these data will provide unique insights on molecular mechanisms that affect cell type specific drug response. As we continue to expand the number of patient samples evaluated with our multi-dimensional platform, this dataset will provide insights for novel drug target discovery, biomarker development, and, in the future, informing treatment decisions.


2019 ◽  
Author(s):  
Pawel F. Przytycki ◽  
Katherine S. Pollard

Single-cell and bulk genomics assays have complementary strengths and weaknesses, and alone neither strategy can fully capture regulatory elements across the diversity of cells in complex tissues. We present CellWalker, a method that integrates single-cell open chromatin (scATAC-seq) data with gene expression (RNA-seq) and other data types using a network model that simultaneously improves cell labeling in noisy scATAC-seq and annotates cell-type specific regulatory elements in bulk data. We demonstrate CellWalker’s robustness to sparse annotations and noise using simulations and combined RNA-seq and ATAC-seq in individual cells. We then apply CellWalker to the developing brain. We identify cells transitioning between transcriptional states, resolve enhancers to specific cell types, and observe that autism and other neurological traits can be mapped to specific cell types through their enhancers.


2018 ◽  
Author(s):  
Xuran Wang ◽  
Jihwan Park ◽  
Katalin Susztak ◽  
Nancy R. Zhang ◽  
Mingyao Li

AbstractWe present MuSiC, a method that utilizes cell-type specific gene expression from single-cell RNA sequencing (RNA-seq) data to characterize cell type compositions from bulk RNA-seq data in complex tissues. When applied to pancreatic islet and whole kidney expression data in human, mouse, and rats, MuSiC outperformed existing methods, especially for tissues with closely related cell types. MuSiC enables characterization of cellular heterogeneity of complex tissues for identification of disease mechanisms.


2021 ◽  
Author(s):  
Gulden Olgun ◽  
Vishaka Gopalan ◽  
Sridhar Hannenhalli

Micro-RNAs (miRNA) are critical in development, homeostasis, and diseases, including cancer. However, our understanding of miRNA function at cellular resolution is thwarted by the inability of the standard single cell RNA-seq protocols to capture miRNAs. Here we introduce a machine learning tool -- miRSCAPE -- to infer miRNA expression in a sample from its RNA-seq profile. We establish miRSCAPE's accuracy separately in 10 tissues comprising ~10,000 tumor and normal bulk samples and demonstrate that miRSCAPE accurately infers cell type-specific miRNA activities (predicted vs observed fold-difference correlation ~ 0.81) in two independent datasets where miRNA profiles of specific cell types are available (HEK-GBM, Kidney-Breast-Skin). When trained on human hematopoietic cancers, miRSCAPE can identify active miRNAs in 8 hematopoietic cell lines in mouse with a reasonable accuracy (auROC = 0.67). Finally, we apply miRSCAPE to infer miRNA activities in scRNA clusters in Pancreatic and Lung cancers, as well as in 56 cell types in the Human Cell Landscape (HCL). Across the board, miRSCAPE recapitulates and provides a refined view of known miRNA biology. miRSCAPE is freely available and promises to substantially expand our understanding of gene regulatory networks at cellular resolution.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kai Kang ◽  
Caizhi Huang ◽  
Yuanyuan Li ◽  
David M. Umbach ◽  
Leping Li

Abstract Background Biological tissues consist of heterogenous populations of cells. Because gene expression patterns from bulk tissue samples reflect the contributions from all cells in the tissue, understanding the contribution of individual cell types to the overall gene expression in the tissue is fundamentally important. We recently developed a computational method, CDSeq, that can simultaneously estimate both sample-specific cell-type proportions and cell-type-specific gene expression profiles using only bulk RNA-Seq counts from multiple samples. Here we present an R implementation of CDSeq (CDSeqR) with significant performance improvement over the original implementation in MATLAB and an added new function to aid cell type annotation. The R package would be of interest for the broader R community. Result We developed a novel strategy to substantially improve computational efficiency in both speed and memory usage. In addition, we designed and implemented a new function for annotating the CDSeq estimated cell types using single-cell RNA sequencing (scRNA-seq) data. This function allows users to readily interpret and visualize the CDSeq estimated cell types. In addition, this new function further allows the users to annotate CDSeq-estimated cell types using marker genes. We carried out additional validations of the CDSeqR software using synthetic, real cell mixtures, and real bulk RNA-seq data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project. Conclusions The existing bulk RNA-seq repositories, such as TCGA and GTEx, provide enormous resources for better understanding changes in transcriptomics and human diseases. They are also potentially useful for studying cell–cell interactions in the tissue microenvironment. Bulk level analyses neglect tissue heterogeneity, however, and hinder investigation of a cell-type-specific expression. The CDSeqR package may aid in silico dissection of bulk expression data, enabling researchers to recover cell-type-specific information.


2018 ◽  
Author(s):  
Florian Wagner ◽  
Itai Yanai

AbstractSingle-cell RNA-Seq (scRNA-Seq) enables the systematic molecular characterization of heterogeneous tissues at an unprecedented resolution and scale. However, it is currently unclear how to establish formal cell type definitions, which impedes the systematic analysis of scRNA-Seq data across experiments and studies. To address this challenge, we have developed Moana, a hierarchical machine learning framework that enables the construction of robust cell type classifiers from heterogeneous scRNA-Seq datasets. To demonstrate Moana’s capabilities, we construct cell type classifiers for human immune cells that accurately distinguish between closely related cell types in the presence of experimental perturbations and systematic differences between scRNA-Seq protocols. We show that Moana is generally applicable and scales to datasets with more than ten thousand cells, thus enabling the construction of tissue-specific cell type atlases that can be directly applied to analyze new scRNASeq datasets. A Python implementation of Moana can be found at https://github.com/yanailab/moana.


2021 ◽  
Author(s):  
Kai Kang ◽  
Caizhi David Huang ◽  
Yuanyuan Li ◽  
David M. Umbach ◽  
Leping Li

AbstractBackgroundBiological tissues consist of heterogenous populations of cells. Because gene expression patterns from bulk tissue samples reflect the contributions from all cells in the tissue, understanding the contribution of individual cell types to the overall gene expression in the tissue is fundamentally important. We recently developed a computational method, CDSeq, that can simultaneously estimate both sample-specific cell-type proportions and cell-type-specific gene expression profiles using only bulk RNA-Seq counts from multiple samples. Here we present an R implementation of CDSeq (CDSeqR) with significant performance improvement over the original implementation in MATLAB and with a new function to aid interpretation of deconvolution outcomes. The R package would be of interest for the broader R community.ResultWe developed a novel strategy to substantially improve computational efficiency in both speed and memory usage. In addition, we designed and implemented a new function for annotating CDSeq-estimated cell types using publicly available single-cell RNA sequencing (scRNA-seq) data (single-cell data from 20 major organs are included in the R package). This function allows users to readily interpret and visualize the CDSeq-estimated cell types. We carried out additional validations of the CDSeqR software with in silico and in vitro mixtures and with real experimental data including RNA-seq data from the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) project.ConclusionsThe existing bulk RNA-seq repositories, such as TCGA and GTEx, provide enormous resources for better understanding changes in transcriptomics and human diseases. They are also potentially useful for studying cell-cell interactions in the tissue microenvironment. However, bulk level analyses neglect tissue heterogeneity and hinder investigation in a cell-type-specific fashion. The CDSeqR package can be viewed as providing in silico single-cell dissection of bulk measurements. It enables researchers to gain cell-type-specific information from bulk RNA-seq data.


2019 ◽  
Author(s):  
Qiao Liu ◽  
Wing Hung Wong ◽  
Rui Jiang

AbstractRegulatory elements (REs) in human genome are major sites of non-coding transcription which lack adequate interpretation. Although computational approaches have been complementing high-throughput biological experiments towards the annotation of the human genome, it remains a big challenge to systematically and accurately characterize REs in the context of a specific cell type. To address this problem, we proposed DeepCAGE, an deep learning framework that incorporates transcriptome profile of human transcription factors (TFs) for accurately predicting the activities of cell type-specific REs. Our approach automatically learns the regulatory code of input DNA sequence incorporated with cell type-specific TFs expression. In a series of systematic comparison with existing methods, we show the superior performance of our model in not only the classification of accessible regions, but also the regression of DNase-seq signals. A typical scenario of usage for our method is to predict the activities of REs in novel cell types, especially where the chromatin accessibility data is not available. To sum up, our study provides a fascinating insight into disclosing complex regulatory mechanism by integrating transcriptome profile of human TFs.


Sign in / Sign up

Export Citation Format

Share Document