scholarly journals Reversible Lectin Binding to Glycan-Functionalized Graphene

2021 ◽  
Vol 22 (13) ◽  
pp. 6661
Author(s):  
Tereza Koukalová ◽  
Petr Kovaříček ◽  
Pavla Bojarová ◽  
Valentino L. P. Guerra ◽  
Vladimír Vrkoslav ◽  
...  

The monolayer character of two-dimensional materials predestines them for application as active layers of sensors. However, their inherent high sensitivity is always accompanied by a low selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization with carbohydrate ligands—chitooligomers, which bind proteins of the lectin family with high selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan binding to wheat germ agglutinin was studied by a series of methods. The results demonstrate that the protein quaternary structure remains intact after binding to the functionalized graphene, and that the lectin can be liberated from the surface by the addition of a binding competitor. The chemoenzymatic assay with a horseradish peroxidase conjugate also confirmed the intact catalytic properties of the enzyme. The present approach thus paves the way towards graphene-based sensors for carbohydrate–lectin binding.

Author(s):  
Parsa Yari ◽  
Homa Farmani ◽  
Ali Farmani ◽  
Amir Mosavi

The purpose of this paper is to present advanced techniques in optical biodevices. Moreover different configurations involving the generation of fiber optical biosensors are described. To overcome some limitations of fiber optical biosensors, plasmonic phenomena proposed. In addition novel plasmonic phenomena have broaden researcher’s horizons in new discovering in terms of technology and application. As regards there are many challenges to detect ultra-low concentration samples with high sensitivity in real time. Researchers have always made great efforts to discover more effective methods. Throughout the paper SPR and LSPR as a powerful analysis instrument are introduced. Finally surveys the current practical performances of plasmonic sensors in detection of bio target are provided. As a result these devices demonstrate great potential in identifying target analytic due to their unique optical biosensors.


2015 ◽  
Vol 44 (15) ◽  
pp. 5638-5679 ◽  
Author(s):  
Zhike Liu ◽  
Shu Ping Lau ◽  
Feng Yan

2D materials have been successfully used in various types of solar cells as transparent electrodes, interfacial and active materials.


Nanoscale ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 5599-5606 ◽  
Author(s):  
P. He ◽  
J. R. Brent ◽  
H. Ding ◽  
J. Yang ◽  
D. J. Lewis ◽  
...  

We present the results from an all inkjet printed 2D-black phosphorus humidity sensor displaying very high sensitivity.


Author(s):  
Konstantina Alexaki ◽  
Davide Giust ◽  
Maria-Eleni Kyriazi ◽  
Afaf H. El-Sagheer ◽  
Tom Brown ◽  
...  

AbstractWe demonstrate the fabrication of a new DNA sensor that is based on the optical interactions occurring between oligonucleotide-coated NaYF4:Yb3+;Er3+ upconversion nanoparticles and the two-dimensional dichalcogenide materials, MoS2 and WS2. Monodisperse upconversion nanoparticles were functionalized with single-stranded DNA endowing the nanoparticles with the ability to interact with the surface of the two-dimensional materials via van der Waals interactions leading to subsequent quenching of the upconversion fluorescence. By contrast, in the presence of a complementary oligonucleotide target and the formation of double-stranded DNA, the upconversion nanoparticles could not interact with MoS2 and WS2, thus retaining their inherent fluorescence properties. Utilizing this sensor we were able to detect target oligonucleotides with high sensitivity and specificity whilst reaching a concentration detection limit as low as 5 mol·L−1, within minutes.


2018 ◽  
Author(s):  
Penny Perlepe ◽  
Rodolphe Clérac ◽  
Itziar Oyarzabal ◽  
Corine Mathonière

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document