scholarly journals A DNA Aptameric Ligand of Human Transferrin Receptor Generated by Cell-SELEX

2021 ◽  
Vol 22 (16) ◽  
pp. 8923
Author(s):  
Nan Zhang ◽  
Tao Bing ◽  
Luyao Shen ◽  
Le Feng ◽  
Xiangjun Liu ◽  
...  

General cancer-targeted ligands that can deliver drugs to cells have been given considerable attention. In this paper, a high-affinity DNA aptamer (HG1) generally binding to human tumor cells was evolved by cell-SELEX, and was further optimized to have 35 deoxynucleotides (HG1-9). Aptamer HG1-9 could be taken up by live cells, and its target protein on a cell was identified to be human transferrin receptor (TfR). As a man-made ligand of TfR, aptamer HG1-9 was demonstrated to bind at the same site of human TfR as transferrin with comparable binding affinity, and was proved to cross the epithelium barrier through transferrin receptor-mediated transcytosis. These results suggest that aptamer HG1-9 holds potential as a promising ligand to develop general cancer-targeted diagnostics and therapeutics.

1997 ◽  
Vol 324 (3) ◽  
pp. 815-822 ◽  
Author(s):  
Dharmendar RATHORE ◽  
Janendra K. BATRA

Restrictocin is a ribonucleolytic toxin produced by the fungus Aspergillus restrictus. Two chimaeric toxins containing restrictocin directed at the human transferrin receptor have been constructed. Anti-TFR(scFv)–restrictocin is encoded by a gene produced by fusing the DNA encoding a single-chain antigen-combining region (scFv) of a monoclonal antibody, directed at the human transferrin receptor, at the 5′ end of that encoding restrictocin. The other chimaeric toxin, restrictocin–anti-TFR(scFv), is encoded by a gene fusion containing the DNA encoding the single-chain antigen-combining region of antibody to human transferrin receptor at the 3′ end of the DNA encoding restrictocin. These gene fusions were expressed in Escherichia coli, and fusion proteins purified from the inclusion bodies by simple chromatography techniques to near-homogeneity. The two chimaeric toxins were found to be equally active in inhibiting protein synthesis in a cell-free in vitrotranslation assay system. The chimaeric toxins were selectively toxic to the target cells in culture with potent cytotoxic activities. However, restrictocin–anti-TFR(scFv) was more active than anti-TFR(scFv)–restrictocin on all cell lines studied. By using protease and metabolic inhibitors, it can be shown that, to manifest their cytotoxic activity, the restrictocin-containing chimaeric toxins need to be proteolytically processed intracellularly and the free toxin or a fragment thereof thus generated is translocated to the target via a route involving the Golgi apparatus.


Structure ◽  
1998 ◽  
Vol 6 (10) ◽  
pp. 1235-1243 ◽  
Author(s):  
Hendrik Fuchs ◽  
Uwe Lücken ◽  
Rudolf Tauber ◽  
Andreas Engel ◽  
Reinhard Geßner

1988 ◽  
Vol 526 (1 Hemochromatos) ◽  
pp. 54-64 ◽  
Author(s):  
John L. Casey ◽  
Bruno Jeso ◽  
Krishnamurthy Rao ◽  
Tracey A. Rouault ◽  
Richard D. Klausner ◽  
...  

1990 ◽  
Vol 1 (4) ◽  
pp. 369-377 ◽  
Author(s):  
T E McGraw ◽  
F R Maxfield

The objective of this work is to identify the elements of the human transferrin receptor that are involved in receptor internalization, intracellular sorting, and recycling. We have found that an aromatic side chain at position 20 on the cytoplasmic portion of the human transferrin receptor is required for efficient internalization. The wild-type human transferrin receptor has a tyrosine at this position. Replacement of the Tyr-20 with an aromatic amino acid does not alter the rate constant of internalization, whereas substitution with the nonaromatic amino acids serine, leucine, or cysteine reduces the internalization rate constant approximately three-fold. These results are consistent with similar studies of other receptor systems that have also documented the requirement for a tyrosine in rapid internalization. The amino terminus of the transferrin receptor is cytoplasmic, with the tyrosine 41 amino acids from the membrane. These two features distinguish the transferrin receptor from the other membrane proteins for which the role of tyrosine in internalization has been examined, because these proteins have the opposite polarity with respect to the membrane and because the tyrosines are located closer to the membrane (within 25 amino acids). The externalization rate for the recycling of the transferrin receptor is not altered by any of these substitutions, demonstrating that the aromatic amino acid internalization signal is not required for the efficient exocytosis of internalized receptor.


Glycobiology ◽  
1992 ◽  
Vol 2 (4) ◽  
pp. 355-359 ◽  
Author(s):  
Gary R. Hayes ◽  
Caroline A. Enns ◽  
John J. Lucas

1983 ◽  
Vol 2 (12) ◽  
pp. 2259-2263 ◽  
Author(s):  
C. Schneider ◽  
M. Kurkinen ◽  
M. Greaves

Sign in / Sign up

Export Citation Format

Share Document