scholarly journals Adipose Tissue-Derived Stromal Cells Alter the Mechanical Stability and Viscoelastic Properties of Gelatine Methacryloyl Hydrogels

2021 ◽  
Vol 22 (18) ◽  
pp. 10153
Author(s):  
Francisco Drusso Martinez-Garcia ◽  
Martine Margaretha Valk ◽  
Prashant Kumar Sharma ◽  
Janette Kay Burgess ◽  
Martin Conrad Harmsen

The extracellular matrix provides mechanical cues to cells within it, not just in terms of stiffness (elasticity) but also time-dependent responses to deformation (viscoelasticity). In this work, we determined the viscoelastic transformation of gelatine methacryloyl (GelMA) hydrogels caused by adipose tissue-derived stromal cells (ASCs) through mathematical modelling. GelMA-ASCs combination is of interest to model stem cell-driven repair and to understand cell-biomaterial interactions in 3D environments. Immortalised human ASCs were embedded in 5%, 10%, and 15% (w/v) GelMA hydrogels and evaluated for 14 d. GelMA had a concentration-dependent increase in stiffness, but cells decreased this stiffness over time, across concentrations. Viscoelastic changes in terms of stress relaxation increased progressively in 5% GelMA, while mathematical Maxwell analysis showed that the relative importance (Ri) of the fastest Maxwell elements increased proportionally. The 10% GelMA only showed differences at 7 d. In contrast, ASCs in 15% GelMA caused slower stress relaxation, increasing the Ri of the slowest Maxwell element. We conclude that GelMA concentration influenced the stiffness and number of Maxwell elements. ASCs changed the percentage stress relaxation and Ri of Maxwell elements transforming hydrogel viscoelasticity into a more fluid environment over time. Overall, 5% GelMA induced the most favourable ASC response.

Author(s):  
Tim Tian Y. Han ◽  
John T. Walker ◽  
Aaron Grant ◽  
Gregory A. Dekaban ◽  
Lauren E. Flynn

Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1908
Author(s):  
Anna Labedz-Maslowska ◽  
Agnieszka Szkaradek ◽  
Tomasz Mierzwinski ◽  
Zbigniew Madeja ◽  
Ewa Zuba-Surma

Adipose tissue (AT) represents a commonly used source of mesenchymal stem/stromal cells (MSCs) whose proregenerative potential has been widely investigated in multiple clinical trials worldwide. However, the standardization of the manufacturing process of MSC-based cell therapy medicinal products in compliance with the requirements of the local authorities is obligatory and will allow us to obtain the necessary permits for product administration according to its intended use. Within the research phase (RD), we optimized the protocols used for the processing and ex vivo expansion of AT-derived MSCs (AT-MSCs) for the development of an Advanced Therapy Medicinal Product (ATMP) for use in humans. Critical process parameters (including, e.g., the concentration of enzyme used for AT digestion, cell culture conditions) were identified and examined to ensure the high quality of the final product containing AT-MSCs. We confirmed the identity of isolated AT-MSCs as MSCs and their trilineage differentiation potential according to the International Society for Cellular Therapy (ISCT) recommendations. Based on the conducted experiments, in-process quality control (QC) parameters and acceptance criteria were defined for the manufacturing of hospital exemption ATMP (HE-ATMP). Finally, we conducted a validation of the manufacturing process in a GMP facility. In the current study, we presented a process approach leading to the optimization of processing and the ex vivo expansion of AT-MSCs for the development of ATMP for use in humans.


2010 ◽  
Vol 42 (12) ◽  
pp. 895-901 ◽  
Author(s):  
Nathalie Saulnier ◽  
Anna Chiara Piscaglia ◽  
Maria Ausiliatrice Puglisi ◽  
Marta Barba ◽  
Vincenzo Arena ◽  
...  

2006 ◽  
Vol 15 (4) ◽  
pp. 583-594 ◽  
Author(s):  
Soo-Kyung Kang ◽  
Myung-Joo Shin ◽  
Jin Sup Jung ◽  
Yong Geun Kim ◽  
Cheul-Hong Kim

Sign in / Sign up

Export Citation Format

Share Document